
Università di Pisa

Doctoral Thesis

A Tensor Framework for Learning in
Structured Domains

Author:
Daniele Castellana

Supervisors:
Prof. Davide Bacciu

A thesis submitted in fulfillment of the requirements
for the degree of Doctor of Philosophy

in the

Department of Computer Science

April 30, 2021

http://www.unipi.it
http://www.di.unipi.it

iii

UNIVERSITÀ DI PISA

Abstract
Department of Computer Science

Doctor of Philosophy

A Tensor Framework for Learning in Structured Domains

by Daniele Castellana

Tensors have been recently emerging as a popular tool in the machine learning
community. This interest is firstly motivated by the natural representation of multi-
modal data as tensors. In this context, tensors are considered a generalisation of arrays
to the multi-dimensional case. Indeed, tensors are more than mere containers: they
are powerful mathematical objects which are strictly related to multi-linear algebra. A
more comprehensive application of tensors and their associated multi-linear algebra led
to their use in representing and compressing parameters of machine learning models.

Despite such interest, little attention has been paid on leveraging tensor methods to
model high-order interactions among information flowing in a learning model. On the
other hand, learning machines for structured data (e.g., trees) are intrinsically based on
their capacity to learn representations by aggregating information from the multi-way
relationships captured in the structure topology. While complex aggregation functions
are desirable in this context to increase expressiveness of the learned representations,
the modelling of high-order interactions among structure constituents is unfeasible in
practice due to the exponential number of parameters required.

The aim of this thesis is to build a bridge between tensors and adaptive structured
data processing, providing a general framework for learning in structured domains
which has tensor theory at its backbone. To this end, we show that tensors arise
naturally in model parameters from the formulation of learning problems in structured
domains. We propose to approximate such parametrisations leveraging tensor decom-
positions whose hyper-parameters regulate the trade-off between expressiveness and
compression ability. Moreover, we show that each decomposition introduces a specific
inductive bias to the model. Another contribution of the thesis is the application
of these new approximations to unbounded structures, where tensor decompositions
needs combining with weight sharing constraints to control model complexity. The last
contribution of our work is the development of two Bayesian non-parametric models
for structures which learn to adapt their complexity directly from data.

HTTP://WWW.UNIPI.IT
http://www.di.unipi.it

v

Contents

Abstract iii

Contents v

List of Figures ix

List of Tables xi

List of Symbols xiii

1 Introduction 1
1.1 Motivations . 1
1.2 Objectives and Contributions . 3
1.3 Outline of the Thesis . 5
1.4 Origin of the Chapters . 6

2 Background and Related Works 7
2.1 Chapter Overview . 7
2.2 Introduction on Machine Learning . 8

2.2.1 Bayesian Networks . 10
2.2.2 Feed-Forward Neural Networks 14

2.3 Learning with Structured Data . 17
2.3.1 General Framework for Processing Structured Data 18
2.3.2 Recursive Models for Sequences 24
2.3.3 Recursive Models for Highly-Structured Domains 26

2.4 Tensors . 29
2.4.1 Definitions and Notations . 29
2.4.2 Operations on Tensors . 31
2.4.3 Tensor Decompositions . 34
2.4.4 Tensors and Machine Learning 38

2.5 Model Taxonomy . 40

3 A Tensor Framework for Recursive Models 43
3.1 Introduction . 43
3.2 General Tensor Framework . 44

3.2.1 Hidden Recursive Tensor Models 44
3.2.2 Recursive Neural Tensor Networks 48

vi

3.3 Existing Approximation . 52
3.3.1 Switching-Parent . 53
3.3.2 First-Order Approximation . 55

3.4 Conclusion . 56

4 Tensor Decompositions for Recursive Tensor Models 59
4.1 Introduction . 59
4.2 Approximated Recursive Tensor Models 60

4.2.1 Tensor Decompositions and Model Approximations 60
4.2.2 Canonical Approximation . 61
4.2.3 Higher-Order Singular Value Decomposition Approximation . . 64
4.2.4 Tensor Train Approximation 66

4.3 Approximated LSTM-based Recursive Models 68
4.4 Experimental Analysis . 70

4.4.1 Implementation Details . 71
4.4.2 Experimental Settings . 71
4.4.3 Boolean Sentences Task . 73
4.4.4 List Operations Task . 76
4.4.5 The Importance of the Inductive Bias 78
4.4.6 Computational Complexity Analysis 83

4.5 Conclusion . 85

5 Tensor Models for Unbounded Structured Data 87
5.1 Introduction . 87
5.2 Infinite Recursive Tensor Models . 88

5.2.1 Tensor Decompositions and Weight Sharing 88
5.2.2 Infinite Canonical Approximation 89
5.2.3 Infinite Tensor-Train Approximation 90

5.3 Application to Natural Language Processing 91
5.3.1 Sentences as Structures . 91
5.3.2 Related Works . 93
5.3.3 Experimental Analysis . 95
5.3.4 Qualitative Analysis of Sentences Semantic Entailment 104

5.4 Conclusion . 105

6 Unbounded Models for Structured Data 107
6.1 Introduction . 107
6.2 Bayesian Mixture Model for Structured Data Clustering 108

6.2.1 SP-HRTM for Unsupervised Learning 108
6.2.2 Mixture of SP-HRTMs . 109
6.2.3 Bayesian Non-parametric Mixture of SP-HRTM 111
6.2.4 Experimental results . 115

6.3 Bayesian HOSVD for Structured Data Labelling 124

vii

6.3.1 Bayesian HOSVD Model . 124
6.3.2 Parameters Learning and Rank Estimation 126
6.3.3 Experimental Analysis . 128

6.4 Conclusion . 132

7 Conclusion 135

A List of Publications 139

B Contributed Code 141

C Proofs 143
C.1 Proof of Theorem 1 . 143

D EM Procedures 147
D.1 SP-HRTM Derivations . 147
D.2 CP-HRTM Derivations . 148
D.3 HOSVD-HRTM Derivations . 150
D.4 TT-HRTM Derivations . 152

Bibliography 155

ix

List of Figures

2.1 A Bayesian Network. 11
2.2 Examples of feed-forward neural networks. Biases are omitted. 15
2.3 A labelled DOAG and its skeleton. 19
2.4 A labelled sequence and a labelled tree. 20
2.5 An isomorphic transduction which evaluates expression on integers. . . 23
2.6 A 3-way tensor T and its sub-arrays. 31
2.7 Different reshaping of a 3-way tensor T 33
2.8 Examples of tensor networks. 34
2.9 Tensor network of the CP approximation of a 3-way tensor. 36
2.10 Tensor network of the HOSVD approximation of a 3-way tensor. . . . 37
2.11 Tensor network of the TT approximation of a 3-way tensor. 38

3.1 BN depicting the HRTM state-transition distribution. 45
3.2 BN induced by HRTM on pair of observed trees (X ,Y). 46
3.3 Tensor network representing the multi-affine map in the RecNTN state-

transition function. 49
3.4 BN representing the SP-HRTM state-transition distribution. 54

4.1 Graphical representation of the probabilistic and the neural CP state-
transition function. 63

4.2 Graphical representation of the probabilistic and the neural HOSVD
state-transition function. 65

4.3 Graphical representation of the probabilistic and the neural TT state-
transition function. 67

4.4 Example of a BoolSent input-output tree pair. 74
4.5 Test root accuracy on the BoolSent task in relation to the input structure

maximum out-degree L. 75
4.6 Validation root accuracy for all the configurations tested on the BoolSent

task with L = 5. 76
4.7 Example of a ListOps input-output tree pair. 77
4.8 Validation root accuracy of all the configurations tested on the ListOps

task. 79
4.9 Test node accuracy for each operator in the BoolSent task with L = 5. 80
4.10 Test node accuracy for each operator in the ListOps task. 82

x

4.11 Average time required by all the configurations tested to complete a
training epoch on the ListOps task. 84

5.1 Constituency tree of the sentence "Effective but too-tepid biopic" taken
from the Sentiment Stanford Treebank [153] test set. 92

5.2 Test and validation results obtained by neural models on different NLP
tasks. 103

5.3 Comparison between infinite neural models predictions on the input
#3991 taken from the SICK [113] test set. 105

6.1 Graphical model of Mix-SP-HRTM, where black-point nodes identify
model parameters. 110

6.2 Graphical model of BNP-SP-HRTM. 113
6.3 Confusion matrices for the synthetic dataset using SP-HRTM and

BNP-SP-HRTM. 117
6.4 Number of active components during the training (averaged over 5 runs)

for two different configurations of BNP-SP-HRTM on the synthetic
dataset. 119

6.5 Time spent for a single training iteration by Mix-SP-HRTM and the
BNP-SP-HRTM. 119

6.6 Clustering obtained by Mix-SP-HRTM and BNP-SP-HRTM using the
best (model selected) configuration on the INEX05 dataset. 121

6.7 Ruzicka similarity between categories on the INEX2005 training set. . 121
6.8 Number of active components as a function of hyper-parameters for

both mixture models on INEX05. 123
6.9 Best clusters obtained using BNP-SP-HRTM with different values of C

on INEX05 dataset. 123
6.10 An example of tree label generation on the synthetic dataset by the

SP-HRTM and the best Bayesian-HOSVD-HRTM execution. 131
6.11 Confusion matrices obtained by the SP-HRTM and the best Bayesian-

HOSVD-HRTM execution. 132

xi

List of Tables

2.1 Taxonomy of all the models introduced in this thesis. 41

4.1 List of all the models assessed. 70
4.2 Hyper-parameters values validated on the BoolSent and the ListOps task. 72
4.3 Test root accuracy obtained by all the evaluated models on the BoolSent

datasets with different maximum out-degree L. 74
4.4 Test root accuracy obtained by all the evaluated models on the ListOps

task. 78

5.1 List of all the models assessed on NLP tasks. 95
5.2 Hyper-parameters values validated for each HRTM on NLP tasks. . . 99
5.3 Hyper-parameters values validated for each neural model on NLP tasks.101
5.4 Results obtained by infinite models on different NLP tasks. 102

6.1 Mean Silhouette index over 5 runs (std in brackets) on the ASYMM
dataset. 117

6.2 Mean Silhouette index over 5 runs (std in brackets) on the INEX05
dataset. In bold the best result for each model. 121

6.3 Mean number of non-empty clusters over 5 runs (std in brackets) on
INEX05 dataset. 122

6.4 Average accuracy and entropy over 5 runs (std in brackets) on INEX05
and INEX06 dataset. 130

6.5 Average label accuracy over 5 runs (std in brackets) on the synthetic
dataset. 131

xiii

List of Symbols

Tensors
R The set of real numbers.
R≥0 The set of positive real numbers.
I, i Real scalars.
v A real vector.
M A real matrix.
T A real tensor.
v̄ A real vector in homogeneous coordinate.
T (a1, . . . ,aD) The application of the multi-linear function associated to a

tensor.
T [i1, . . . , iD] Indexing of a tensor.
T [:, i2, :, i4] A sub-tensor of a tensor.
vec(T), T (n) Vectorisation and n-mode matricisation of a tensor.
a� b Element-wise multiplication.

Structures
D A structure.
v A node.
(u, v, l) An edge between node u and node v in position l.
vert(D) The set of all the nodes in D.
edg(D) The set of all the edges in D.
ch(v) The set of the child nodes of v.
pa(v) The set of the parent nodes of v.
de(v) The set of all the descendant nodes of v.
Dv The sub-structure in D which contains only the node v and

de(v).
#P
L The set of all structures with maximum out-degree of L and a

maximum in-degree of P .
skel(X) The skeleton of a labelled structure.
X A domain for the labels attached to a structure.
X#P

L The set of labelled structures whose labels are in X and whose
skeletons are in #P

L .

Random Variables
H A random variable.

xiv

h A realisation of the random variable H.

Constants
N The number of the training examples.
C The size of the hidden encoding space.
R The rank of the tensor decompositions.
L The maximum out-degree of a structure.
M The number of the possible input categorical labels.
K The number of the possible output categorical labels.

1

Chapter 1

Introduction

1.1 Motivations

In many real-world domains (e.g. chemistry, natural language processing, document
processing, code analysis), information is naturally represented as structured data. A
structured data comprises a set of atomic entities (usually referred to as vertices or
nodes) and a structure. Vertices contain pieces of information of the domain of interest,
while the structure depicts how these pieces are related. For example, the sentence
“The sky is blue and the grass is green” is obtained by composing the two sub-phrases
“The sky is blue” and “the grass is green” with the conjunction “and”. The intrinsic
compositionality of sentences makes them suitable for a tree representation, where the
whole sentence (the root) is built in terms of sub-phrases (the internal nodes) which
in turn are defined in terms of smaller constituents; the base cases are words (the
leaves) since they are the atomic piece of information.

Developing Machine Learning (ML) models for such a rich data representation poses
two main challenges: they should adapt to different structures, and they should process
the atomic information along with the contextual information (e.g. the surrounding
entities) given by the structure. If we consider sentences as structures, the model
adaptivity ensures that it can process different sentences. On the other hand, the
ability to process contextual information guarantees that the model distinguishes “the
sky is blue and the grass is green” from “the sky is green and the grass is blue”. While
these two sentences comprise the same atomic constituents, their structures define
different contexts. In the first sentence, the adjective “blue” is in the context of the
noun “sky”; in the second sentence, the same adjective is in the context of the noun
“grass”.

The function which processes contextual information is usually referred to as
aggregation function. The expressive power of such a function is strictly related to the
model capacity to capture complex relationships among structure constituents. For
example, the conjunction “and” between two sub-phrases expresses a non-contrasting
relation between them. This relation can be thought of as a sort of summation of the
sub-phrases semantics. Nevertheless, the conjunction “but” expresses a contrasting
relation whose semantic is more articulated than a simple summation. The sentence
“It is not my favourite film, but I like it” expresses a positive judgement even if the

2 Chapter 1. Introduction

first sub-phrase does not.
This motivates the need for expressive aggregation functions for learning in struc-

tured domains. In this thesis, we address this challenge by means of tensor theory.
Tensors are commonly considered a generalisation of arrays to the multi-dimensional

case. Indeed, tensors are more than mere containers: they are powerful mathematical
objects strictly related to multi-linear algebra. Nevertheless, they suffer the curse of
dimensionality, i.e. the exponential relationship between the number of tensor entries
and its order. Therefore, working with high-order tensors becomes prohibitive due to
the computational and memory resources necessary to process and store such data.
In this respect, tensor decompositions are fundamental to mitigate this effect since
they factorise high-order tensors into a combination of simpler ones.

Recently, tensors have aroused interest in the ML community. While such interest
was first restricted to multi-way data analysis [99, 1, 37], it later spread to ML models
that handle tensor data [160, 137, 100]. Nevertheless, the last emerging (and the most
exciting) trend in the intersection between these two fields is the use of tensor theory
and multi-linear algebra as a backbone for ML. In this context, tensor decompositions
with low-rank constraints have been successfully applied to reduce the number of
parameters of neural [125, 23, 105, 163] and probabilistic models [126, 176] with
negligible performances loss. Nevertheless, the usage of tensors as parameters can be
useful to model higher-order interactions among inputs. While the possibility to model
higher-order interactions with tensors has been discussed in the literature with the
introduction of the High-Order Neural Network [65], less attention has been paid on
the possibility to use tensor decompositions to reduce the complexity of such networks.
Thus, modelling higher-order interactions is feasible only for a small number of inputs
due to the exponential number of parameters required (e.g. [19, 171]).

So far, we have discussed how:

1. ML models for structures require complex aggregation functions to express
complex relationships among structure constituents;

2. tensors can implement complex functions due to their intrinsic ability to model
higher-order interactions; the price to pay for such expressiveness is an exponen-
tial number of tensor entries;

3. tensor decompositions provide a well-grounded mechanism to mitigate the tensors
curse of dimensionality.

Thus, it seems natural to apply tensors and their decompositions to implement new
aggregation functions while limiting their complexity. Nevertheless, the connection
between ML models for structured data and tensor theory is still an unexplored
research area.

The use of tensors to aggregate structure constituents has been proposed in seminal
papers such as [116] and [58]. Nevertheless, they are used in practice only to model
the interactions among a small number of constituents (e.g. in binary trees [153]) due
to the exponential size of the tensor parameters.

1.2. Objectives and Contributions 3

When the number of constituents to aggregate increases, approximations are
commonly used. In probabilistic models, the Switching Parent (SP) approximation
[147] has been applied to reduce the complexity of tensor-based aggregation functions
[12]. The effectiveness of the SP approximation relies on its simple probabilistic
interpretation and the minimal effort required to derive its learning procedure [147].
In neural models, the common approach is to consider only first-order interactions
among structure constituents. The use of first-order neural models is motivated by
their theoretic expressive power. It can be shown that first-order neural models
for structured data are universal approximators [154, 79, 78] and they can simulate
computational models such as Finite State Automata [103, 104] and Turing Machines
[151].

Both existing approximations rely on simple aggregation functions based on
summations which are not related to tensor decompositions. Thus, given their theoretic
expressive power, it is natural to ask if models that leverage complex aggregation
functions are useful at all. In this respect, the authors in [116] present an experimental
comparison between second-order and first-order models on the grammatical inference
task: the results show that, in practice, second-order models outperform first-order
architectures, arguing that the former architectures are better suited for representing
finite-state grammars. Hence, even if we have guarantees that the desired solution
is in the hypothesis space of first-order models, we do not have any guarantee that
the learning algorithm will find such a solution. This suggests that there are still
fundamental research questions concerning the practical inductive bias introduced by
the existing models.

1.2 Objectives and Contributions

The main objective of this thesis is to deepen the relationship between structured data
processing and tensors theory. To this end, we first aim to define a tensor framework
which relates model expressiveness with a tensor parametrisation of the aggregation
function. Then, we intend to use the proposed framework to define a novel class of ML
models for structured data which leverage tensor decompositions to capture complex
interactions while limiting the model complexity. A key point of our study is the
analysis of the inductive bias introduced by these models.

A second objective is to develop models which can automatically adapt their
complexity to data, avoiding the costly model selection phase to select the right
hyper-parameters values. In this respect, we use a Bayesian approach.

In the following, we discuss the main contributions in detail.

A Tensor Framework for Learning in Structured Domains

We introduce a framework for learning in structured domains grounded on tensor
theory. This framework is based on the observation that the existing models in the
literature can be defined by imposing specific constraints on a tensor parametrisation.

4 Chapter 1. Introduction

From this perspective, we argue that models parametrised by a tensor have a low
inductive bias since they do not add such constraints. We instantiate the proposed
framework defining a probabilistic and a neural model whose aggregation functions
are parametrised by a tensor, highlighting that both models introduce a low inductive
bias. Nevertheless, the price to pay for such expressiveness is an exponential relation
between the number of parameters and the hidden encoding space. Also, we show how
a probabilistic and a neural models commonly used in the literature can be obtained
by imposing a specific constraint on the tensor parameter, reducing the number of
parameters required. The advantage of such a formulation is twofold. On the one
hand, it paves the way to applying tensor decompositions to approximate tensor
models (and thus reducing the number of parameters required). On the other hand,
it allows interpreting such approximations as the introduction of a specific inductive
bias due to the constraints imposed to the tensor parameter.

New Models for Structured Data by means of Tensor Decompositions

We develop nine different models for structured domains combining three different
tensor decompositions with three common classes of ML models: probabilistic, neural
and LSTM-based. It is worth highlighting that LSTM-based models are neural models
with a specific architecture. We treat them as a separate class due to the relevance of
the LSTM architecture in the context of structured data learning. In all the proposed
models, we break the exponential relation between the number of parameters and
the hidden encoding space thanks to a new hyper-parameter: the decomposition
rank. While the size of the hidden encoding space reflects the input structures
complexity (in terms of constituents co-occurrences), the value of the rank reflects
the model expressiveness (in terms of the ability to capture complex interactions
among constituents). Moreover, we show that each tensor decomposition introduces a
specific inductive bias into the model. The experimental analysis conducted on two
different tasks shows that the proposed models outperform the existing ones. In light
of the results obtained, we discuss the advantages of tensor decomposition in terms of
inductive bias.

Tensor-based models for unbounded structured data

We combine tensor decompositions with weight sharing constraints to develop a set of
models which handle unbounded structures, i.e. structures where we cannot determine
an upper bound on the context size. Also in this case, we analyse the inductive
bias they introduce. Interestingly, a connection with the canonical decomposition
of symmetric tensors arises, leading to the definition of permutational invariant
aggregation functions. We experimentally assess the effectiveness of the proposed
models on different natural language processing tasks. The results show that neural
models which leverage tensor decompositions outperform existing models in semantic
similarity tasks.

1.3. Outline of the Thesis 5

Unbounded models for structured data

We introduce two probabilistic unbounded models for structured data. In this case,
the term unbounded refers to the model complexity that is not a priori determined
by fixing some hyper-parameters. Thus, it is (theoretically) unbounded. The first
model introduced is a Bayesian non-parametric mixture model to tackle unsupervised
tasks on structured data. Thanks to the Bayesian framework, the number of clusters
is learned from the data. The second model introduced is a Bayesian extension of a
model based on a tensor decomposition. In this case, the Bayesian framework allows
estimating the decomposition rank directly from the input data. The experimental
results show the validity of the Bayesian approach also in the context of structured
data.

1.3 Outline of the Thesis

The thesis is organised in seven chapters.
In Chapter 1, we detail the motivations underlying our work. Then, we summarise

the main objectives and the major contributions of the thesis.
In Chapter 2, we introduce the background topics relevant for developing the

thesis. In particular, we discuss general concepts of ML as well as a general framework
for learning in structured domains. Moreover, we define the concept of tensors,
summarising the most relevant operations on them. Particular emphasis is given to
tensor decompositions. Finally, we provide a taxonomy of the model introduced in
this thesis to facilitate the reading.

In Chapter 3, we present a tensor framework for learning with structured data. To
this end, we define a probabilistic and a neural model which rely on a tensor parametri-
sation of the aggregation function. Moreover, we show how existing approximations
can be cast in the proposed framework.

In Chapter 4, we introduce novel probabilistic and neural models for structured data
leveraging tensor decompositions. In particular, we show how tensor decompositions
can be used to reduce the complexity of full-tensor models by introducing a specific
inductive bias. We also provide an experimental evaluation of the proposed models.

In Chapter 5, we define a new set of models that handle unbounded structures by
combining tensor decompositions with weight sharing constraints. We experimentally
assess the performances of the proposed models on natural language processing tasks.

In Chapter 6, we introduce two probabilistic models which adapt their complexity
directly to data. The former is a Bayesian Non-Parametric mixture model for learning
clusters in structured data. The latter is a Bayesian tensor model that adjusts its
aggregation function complexity during the learning procedure. Both models are
experimentally evaluated.

In Chapter 7, we draw our conclusion summarising the most relevant results of our
work, discussing the main limiting factors as well as possible future research directions.

6 Chapter 1. Introduction

1.4 Origin of the Chapters

Most of the research studies described in this thesis have been published in conference
proceedings, journal papers or are currently under review. In particular:

• the tensor framework for learning in structured domains has been proposed in
[25], submitted for journal publication;

• the tensor based models defined in Chapter 4 have been introduced proposed in
[26, 27, 29] and in the submitted journal paper [25];

• the tensor models for unbounded structures and their application on natural
language processing tasks presented in Chapter 5 have been introduced proposed
in [28];

• the mixture models and the Bayesian tensor model presented in Chapter 6 have
been proposed in [9, 7] and [26], respectively.

7

Chapter 2

Background and Related Works

In this chapter, we review the main background topics used to develop our thesis.
In Section 2.1, we provide a more detailed description of the chapter, motivating
why we do not describe other research directions related to our work. In Section
2.2, we introduce general machine learning concepts together with the two learning
paradigms used in our work. In Section 2.3, we show how these learning paradigms
can be extended to process structured data recursively. Finally, in Section 2.4, we
introduce tensors and the most relevant operations on them. A particular emphasis is
given to tensor decompositions.

2.1 Chapter Overview

This chapter comprises three sections, each of them dedicated to introducing a specific
background topic. To facilitate the reading, we briefly resume here the concepts
presented in each section highlighting why they are relevant for our work.

In Section 2.2, we present a brief introduction to machine learning. The section
starts introducing the basic concepts of inductive learning. In inductive learning, the
goal of a learning process is to find a solution to the given task relying only on the
set of observed samples. Importantly, the solution found must be effective on new
task instances (i.e. instances never observed before). The learning model ability to
generalise from the observed data is the core of the inductive learning and it is strictly
related to their prior beliefs. If such beliefs match the assumptions of the task, the
learning models will be able to generalise over new task instances more easily. This
concept is a crucial point of our thesis; in Chapter 4, we show how leveraging tensor
decompositions we can inject different prior beliefs which can help learning models for
structured data. In the last part of the section, we introduce two learning paradigms
which are extensively used in the rest of the thesis: the probabilistic and the neural
one. For each of them, we show how such prior assumptions can be encoded in their
definitions as well as the learning procedures we use in this work.

In Section 2.3, we introduce a well-known general framework for the adaptive
processing of structured data. This framework is based on the recursive processing of
the structured data and it is used as the starting point of our thesis. We mainly focus
our research on a probabilistic and a neural instantiation of this framework. It is

8 Chapter 2. Background and Related Works

worth highlighting that a recursive processing of structured data also occurs in other
approaches such as reservoir computing [169, 110, 59, 60] and convolution models [119].
Even if they are not directly discussed in this thesis, we believe that the application
of the tensor framework proposed in these contexts is an interesting future work. The
same holds for the interesting research field of learning models for graphs [10]. The
intrinsic presence of cycles in graphs does not allow applying the general framework
mentioned above. With no doubt, the application of tensor theory also in this area
is an exciting future research direction. Finally, it is worth mentioning that kernel
methods [62, 77] is another popular learning paradigm for structured. Nevertheless,
they are not directly based on a recursive processing of the structure and therefore
are not discussed in this thesis.

In Section 2.4, we introduce tensors and their decompositions since they are the
backbone of our proposal. We also discuss their relevant applications in the machine
learning field found in the literature.

Finally, in Section 2.5, we introduce a model taxonomy of the models that will be
introduced in the next chapters.

2.2 Introduction on Machine Learning

Machine Learning (ML) is a multidisciplinary field aiming to develop models that
can perform specific tasks without being explicitly programmed to do so.1 Their
effectiveness relies on their ability to learn from experience. In this sense, we can say
that ML models are indeed explicitly programmed to learn from experience. According
to Mitchell, the concept of learning can be defined as [117]:

“A computer program A is said to learn from experience E with respect
to some class of tasks T and performance measure J , if its performance at
tasks in T , as measured by J , improves with experience E.”

This definition introduces four key concepts of ML: the task T , the experience E,
the performance P and the learning model A.

Commonly, the experience is modelled as a set of independent identically distributed
(i.i.d.) samples D̂ = {s1, . . . , sN}. Each sample si is generated from an unknown
distribution P̂ (s), i.e. si ∼ P̂ (s). The distribution P̂ (s) is usually referred to as true
data distribution. In this thesis, we assume that this distribution is used to generate
the experience as well as the new unobserved samples.

The characteristics of the sample s depend on the specific task T . For example, in
a supervised task, each sample s is a pair (x, y); in an unsupervised task, it contains
only one element (x). In this brief introduction, we focus on general aspects of the
learning process which hold for all tasks. Thus, such a characterisation is not necessary.

1The definition “without being explicitly programmed” is often attributed to Arthur Samuel, who
coined the term “machine learning” in 1959 [102].

2.2. Introduction on Machine Learning 9

Although, in the rest of the thesis, we focus on tasks on structured domains, i.e. tasks
in which each sample contains structured data.

The performance measure J evaluates the goodness of a possible task solution h
on a sample s. Commonly, it is defined as an error measure (i.e. lower is better); thus,
J(s, h) measures the error made by the solution h on the sample s.

The learning model A comprises a set of hypothesis H, which is referred to as
hypothesis space, and a learning procedure. The hypothesis space contains all the
possible solutions (i.e. hypothesis) h for the task T which can be implemented by A.
The learning procedure is the core of the learning model; it aims to learn from the
observed data D̂ the best solution ĥ ∈ H according to J . Note that the best solution
ĥ should minimise J over all possible task instances s, i.e.

ĥ = arg min
h∈H

∫
J(s, h) dP̂ (s), (2.1)

where the value
∫
J(s, h) dP̂ (s) is the expected error made by the hypothesis h with

respect to the true distribution P̂ (·) and it is therefore referred to as the true error.
The true error cannot be used directly by the learning procedure to search for the

best hypothesis in H since the true data distribution P̂ (·) is unknown. Everything we
know about the true data distribution is the set of observed samples in D̂. Thus, the
learning procedure requires an inductive principle in order to generalise from these
examples. The common inductive learning principle states that any hypothesis found
to approximate the target function well over a sufficiently large set of training exam-
ples, will also approximate the target function well over other unobserved examples
[117]. This inductive principle is justified by the assumption that both observed and
unobserved data are drawn from the same distribution. Hence, the goal of the learning
algorithm is to find the hypothesis which minimises the error on the observed data D̂:

h̃ = arg min
h∈H

N∑
i=1

J(si, h), (2.2)

where the value
∑N
i=1 J(si, h) is usually denoted by empirical error.

These concepts have been formalised by the statistical learning theory [166, 165],
also providing an upper bound on the discrepancy between empirical error and true
error. Such a bound depends on a quantity that grows as the learning model complexity
grows but reduces as the number of training examples increases. While a detailed
discussion on these topics is out of our scope (we refer the reader to [166, 165]), this
result justifies the need of learning models which minimise the empirical error while
limiting the model complexity. In this context, the model complexity is strictly related
to its expressiveness; complex models are able to implement a wide range of possible
solutions. On the other hand, too simple models can fail to minimise the empirical
error since they can implement only a small range of solution.

The key to reach the trade-off between the limitation of the model complexity and
the minimisation of the empirical error relies on the inductive bias of the learning

10 Chapter 2. Background and Related Works

model. According to [118], the term inductive bias indicates any prior assumptions
that the learning model can exploit to prefer a hypothesis over another. Note that
the term prior underlines that such assumptions do not depend on the observed
information but are a priori specified. It is worth highlighting that the goodness of
these assumptions depends on the task T we are going to solve.

Commonly, a learning model defines the hypothesis space as a parametric space
H = {hθ | θ ∈ W}, where θ are the hypothesis free parameters and W is the set of
all possible parameter values. The quantity hθ represents the parametric hypothesis
implemented by the learning model. Thus, the inductive bias can be specified in two
ways: (1) selecting the parametric hypothesis hθ and (2) choosing a learning procedure
which prefers a specific type of hypothesis [118]. In the former one, the inductive bias
is used to explicitly limit the complexity of the model. For example, in probabilistic
models, we can limit the hypothesis space by imposing independence assumptions
among model variables (we discuss this aspect in Section 2.2.1). Conversely, in the
non-parametric models that we introduce in Chapter 6, the model inductive bias is
specified by a set of prior belief which penalise (or promote) a hypothesis during the
training.

2.2.1 Bayesian Networks

Bayesian Networks (BNs) are a class of graphical models which allow depicting a joint
probability distribution of random variables through a directed acyclic graph. To be
more precise, they depict a factorisation of such a joint distribution asserting a set of
conditional independence assumptions among variables. The graph structure allows
to easily identify these independence assumptions.

Although BNs model interactions among all types of variables, for our purposes,
it is convenient to assume they are all discrete random variables. A discrete random
variable X is a random variable which has a finite number of outcomes that are also
referred to as states. In the remainder of the thesis, we use uppercase letters to denote
random variables and lowercase letter to denote outcomes. We usually use the same
letter to denote random variables and their realisations, i.e. x is a realisation of the
random variable X; P (X = x) indicates the probability that x is the outcome of the
random variable X. For the sake of simplicity, we denote this value as P (x) since the
random variable can be deduced from the lowercase letter that indicates the outcome.
Similarly, we denote by

∑
x P (x, y) =

∑M
x=1 P (X = x, Y = y) the marginalisation of a

discrete random variable X with M states.

Definition 2.1 (Bayesian Network [17]). A BN is a directed acyclic graph where
vertices represent random variables and edges represent dependencies among variables.
Let {X1, . . . , XD} the set of random variables in the graph, the joint probability of
these variables is factorised as:

P (x1, . . . , xD) =
D∏
i=1

P (xi | xpa(Xi)), (2.3)

2.2. Introduction on Machine Learning 11

X1

X2

X4 X5

X3

Figure 2.1: A Bayesian Network.

where pa(Xi) represents the set of all variables which are linked to Xi in the graph.

In Figure 2.1, we show an example of BN which factorises the joint-probability of
five variables {X1, X2, X3, X4, X5} as:

P (x1, x2, x3, x4, x5) = P (x1 | x2, x3)P (x2 | x4, x5)P (x3 | x5)P (x4)P (x5). (2.4)

The conditional distribution P (x1 | x2, x3) reflects that the variable X1 has two
incoming edges in the BN: one from X2 and one from X3. Similarly, the variable X2

has two incoming edges from X4 and one from X5; hence, its state is determined by
the conditional distribution P (x2 | x4, x5). The variable X3 has only one incoming
edge from X5 and therefore is determined by P (x3 | x5). The variables X4 and X5

have no incoming edges: hence, their states are determined by the distributions P (x4)
and P (x5), respectively.

As we stated before, the key aspect of graphical models is their ability to depict
conditional independence assumptions.

Definition 2.2 (Conditional independence [17]). Two sets of random variables X
and Y are conditionally independent given another set of random variables Z (i.e.
X ⊥⊥ Y | Z) if it holds:

P (X ,Y | Z) = P (X | Z)P (Y | Z). (2.5)

If set Z is empty, the set X and Y are unconditionally independent and it is simply
denoted by X ⊥⊥ Y.

For example, in the distribution in Eq. (2.4), it holds X4 ⊥⊥ X5 since:

P (x4, x5) =
∑
x1

∑
x2

∑
x3

P (x1, x2, x3, x4, x5)

=
(∑
x1

P (x1 | x2, x3)
)(∑

x2

P (x2 | x4, x5)
)(∑

x3

P (x3 | x5)
)
P (x4)P (x5)

= P (x4)P (x5)

(2.6)

The same independence assumption can be deduced from the BN in Figure 2.1,
since the variables X4 and X5 are d-separated in the BN. In general, for every disjoint

12 Chapter 2. Background and Related Works

sets of variables X , Y and Z in a BN, it holds that X ⊥⊥ Y | Z if X and Y are
d-separated by Z in the BN.

Definition 2.3 (d-separation [17]). Let X , Y and Z be disjoint sets of vertices (i.e.
variables); X and Y are d-separated by Z if and only if all undirected paths between
some vertex in X and some vertex in Y are blocked by Z. A path U is blocked by Z if:

• there is a collider in the path and neither the collider nor any of its descendants
is in Z;

• there is a node in the path that is not a collider and it is in Z.

From the definition of d-separation in BNs, it is clear that colliders play a key role
to determine the independence assumptions induced by a BN. A collider c in a path
is a vertex such that both its neighbours in the path have directed edges to c. For
example, in the BN in Figure 2.1, the node X2 is a collider in the undirected path
X4 −X2 −X5. In fact, both neighbours of X2 (i.e. X4 and X5) have edges directed
to X2.

As we have already shown mathematically in Eq. (2.6), the random variables X4

and X5 are independent. We can draw the same conclusion showing that these two
variables are d-separated in the BN in Figure 2.1. Between X4 and X5 there are two
undirected paths: U1 = X4−X2−X5 and U2 = X4−X2−X1−X3−X5. Nevertheless,
both paths are blocked by colliders X2 and X1, respectively. Then, we can conclude
that X4 and X5 are d-separated in this BN.

It is worth highlighting that while d-separations imply conditional independences,
conditional independences do not imply d-separations. For example, variables X4 and
X5 are not d-separated given X2 in the BN in Figure 2.1. However, we can still define
a distribution that is consistent with such a BN but also ensure X4 ⊥⊥ X5 | X2. It is
enough to define P (x2 | x4, x5) = P (x2|x4)P (x2|x5)

P (x2) , hence:

P (x4, x5 | x2) = P (x2 | x4, x5)P (x4)P (x5)
P (x2)

= P (x2 | x4)P (x2 | x5)P (x4)P (x5)
P (x2)P (x2) = P (x4 | x2)P (x5 | x2),

(2.7)

where the last equality holds applying the Bayes’ theorem two times.
Unfortunately, we cannot create a BN which represent this specific conditional

independence assumption. In this sense, BNs have a limited ability to graphically
express conditional independence statements [17]. Nevertheless, it does not exist
a graphical model which allows to express all possible conditional independence
statements [17].

The parameters of a BN are the parameters of each conditional distribution P (xi |
xpa(Xi)); since we assume that all variables are discrete, each conditional distribution is
a categorical distribution. The number of parameters for each conditional distribution
depends on how many variables it is defined. For example, assuming that Xi has

2.2. Introduction on Machine Learning 13

M states, the distribution P (xi) defines M probability values (one for each state of
Xi) and therefore it is parametrised by a vector θ ∈ RM . Clearly, θ can contain only
positive values (i.e. θ[i] > 0) and the sum on all possible outcomes of the variable
must be equal to one (i.e.

∑M
i=1 θ[i] = 1). These are usually referred to as probability

constraints. For the sake of simplicity, we denote as θ ∈ RM≥0 a vector whose entries
are non-negative. The sum-to-one constraint can always be satisfied normalising the
positive vectors properly.

A conditional distribution with two variables P (xi | xj) define a distribution over
Xi for each state of Xj : hence, assuming that both variables have M states, it requires
M ×M parameters. We write P (xi | xj , θ) to indicate that θ ∈ RM×M≥0 parametrises
the conditional distribution. In particular, we assume that P (Xi = i | Xj = j) is
equal to θ[j, i]. It is easy to show that if the probability distribution is defined over D
variables with M states, it requires MD parameters.

From this point of view, BNs allow reducing the number of parameters required
to model joint probability distributions. For example, the joint distribution in the
left-hand side of Eq. (2.4) requires M5 parameters (assuming that all variables have
M states). However, thanks to the independence assumptions introduced by the BN,
we are able to model that joint distribution using M3 +M3 +M2 +M +M = O(M3)
parameters, i.e. the parameters of the distributions in the right-hand side of Eq. (2.4).

Hypothesis space. The hypothesis space defined by a BN is the set of probability
distribution which are consistent with the set of independence assumptions it introduces.
Hence, it is convenient to represent the hypothesis space in function of the parameters:
H =

{∏D
i=1 P (xi | xpa(Xi), θi) | ∀i ∈ [1, D]. θi ∈ R≥0

}
, where, for the sake of simplicity,

we ignore the size of each parameter θi.

Learning. Thanks to the definition of the hypothesis space as a parametric set of
distribution, the learning procedure aims to find the best parameters which minimise
the error measure. In probabilistic models, the common error measure used is the
negative-log likelihood J(s, θ) = − logP (s | θ). This allows rewriting the learning
problem defined in Eq. (2.2) as:

θML = arg min
θ∈P

N∑
i=1

J(si, θ) = arg min
θ∈P

−
N∑
i=1

logP (si | θ) = arg max
θ∈P

N∏
i=1

P (si | θ),

(2.8)
where the last equality holds for the monotonicity of the logarithm function. Hence,
the best parameters θML are the one which maximise the likelihood of the observed
data.

Learning the maximum likelihood parameters of a BN is straightforward when all
variables are visible (i.e. if each sample s contains the realisations of all the random
variables defined by the BN). Nevertheless, if there are hidden variables (i.e. variables
which realisations are not observed in s), the maximisation of the likelihood of the
observed data becomes more complex. Due to the marginalisation of the hidden

14 Chapter 2. Background and Related Works

variables, the visible variables can couple together. Thus, we lose the factorisation
introduced by the BN [17].

In this thesis, we focus on one of the most used algorithms to learn maximum
likelihood parameters of a BN in the presence of hidden variables: the Expectation
Maximisation (EM) [45].

The basic idea of the EM is to maximise a lower-bound of the data log-likelihood
rather than the data likelihood itself. Let assume that there are two disjoint set
of variables in the BNs, i.e. {Hi,Vi}, and that sample s contains outcomes of only
variables in V (i.e. s = {v1, . . . v|V|}), the lower-bound L̃ maximised by the EM is
defined as:

L̃(Q, θ) = −
N∑
i=1

E[logQ(Hi | Vi)]Q(Hi|Vi) +
N∑
i=1

E[logP (Hi,Vi | θ)]Q(Hi|Vi), (2.9)

where Q and θ are the parameter of the lower-bound. The first term of the bound
is usually called the entropy term, while the second term is the energy term. The
maximisation of L̃ is achieved iteratively, starting from an initial parametrisation θ0.
The t-th iteration comprises the following two steps:

E-step: for a fixed parametrisation θt−1, compute Qt = arg maxQ L̃(Q, θt−1). The
best Qt corresponds to the posterior P (Hi | Vi, θt−1) of each sample si and it
can be usually obtained applying an inference procedure which depends on the
BN;

M-step: for a fixed distribution Qt, compute θt = arg maxθ L̃(Qt, θ). Since the only
term in L̃ which depends on θ is the energy term, the best θt are the ones which
maximise the expected complete log-likelihood

∑N
i=1 E[logP (Hi,Vi | θ)]Q(Hi|Vi).

In the case of BNs, this optimisation can be solved analytically.

Even if we have a guarantee that EM improves the data likelihood at each
iteration, we do not have any guarantee that it will reach the global maximum [17].
The algorithm usually terminates when the likelihood of the data becomes constant
(i.e. the improvement is less than a threshold) or a maximum number of iterations is
reached.

2.2.2 Feed-Forward Neural Networks

Feed-forward Neural Networks (NNs) are powerful learning models in which the infor-
mation is propagated from the input towards the output without feedback connections.

The computation unit of feed-forward NNs is the neuron. Let x ∈ RM be an input
vector, the neuron output is a scalar which is computed as y = σ(wTx + b). The
vector w ∈ RM and the scalar b are the neuron parameters, while the function σ(·) is
referred to as the activation function of the neuron. Typical examples of activation
functions are the linear activation function σ(x) = x and the sigmoid activation

2.2. Introduction on Machine Learning 15

y

w

x

(a) A neuron.

y

W

x

(b) A neuron layer.

y

W y

h

W h

x

(c) A Multi-layer perceptron.

Figure 2.2: Examples of feed-forward neural networks. Biases are
omitted.

function σ(x) = 1/(a+e−x). We refer to [68] for others activation functions commonly
used in NNs.

Neurons are usually grouped into layers. Let K the number of neurons in a layer,
then the layer output is a vector y ∈ RK obtained as:

y = σ(Wx+ b), (2.10)

where W ∈ RK×M and b ∈ RK are the parameters of the layer obtained stacking
together the parameter wi and the bias bi of each neuron i ∈ [1,K] in the layer. The
activation function σ is applied element-wise. We show in Figure 2.2b an example of
neural layer.

If we consider the parametric function ψθ(x) = Wx+ b (where θ = {W , b} are
the function parameters), the output of a neuron layer is obtained by composing the
activation function σ with ψθ, i.e. y = σ(ψθ(x)). The function ψθ : RM → RK defines
an affine transformation of the input vector x.

Definition 2.4 (Affine transformation). A function ψ : RM → RK is an affine
transformation if ∃φ : RM → RK .∀x ∈ RM ∧ x′ ∈ RM . ψ(x)− ψ(x′) = φ(x− x′) is
linear.

In fact, ψθ(x)− ψθ(x′) = Wx+ b− (Wx′ + b) = W (x− x′) which is the linear
function defined by the matrix W . Moreover, it can be shown that every affine map
can be obtained composing a linear transformation (i.e. a matrix) and a translation
(i.e. vector addition); hence, the set {Wx+ b |W ∈ RK×M , b ∈ RK} contains all the
affine maps between RM and RK .

It is common to represent an affine map through a single matrix W ′ ∈ RK×(M+1)

which is obtained concatenating the bias vector b to the last column of W , i.e.
W ′ = [W | b]. Such a matrix is called augmented matrix and it requires that also
input vectors are augmented appending a 1 as last entry. The vector x̄ = [x; 1]
represents a homogeneous coordinate of x. Hence, the equivalence Wx+ b = W ′x̄

holds.

16 Chapter 2. Background and Related Works

More complex NN architectures can be realised stacking layers, i.e. using the
output of i-th layer as input of the (i+1)-th layer. This architecture is usually referred
to as Multi Layer Perceptron (MLP). The simplest MLP architecture contains only
two layers (see Figure 2.2c) and its output is computed as:

y = φ(W yh+ by), h = σ(W hx+ bh), (2.11)

where h ∈ RC is the output of the first layer and it is referred to as the hidden
representation of the input x. For this reason, the first layer is denoted by hidden
layer. Similarly, the last layer is denoted by output layer.

The parameters of the hidden layer are θh = {W h ∈ RC×M , bh ∈ RC} while
the parameters of the output layer are θy = {W y ∈ RK×C , by ∈ RK}. Using
augmented matrices, we can write more compactly y = σy(W̄

y
σh(W̄ h

x̄)). For the
sake of simplicity, we omit the homogeneous coordinate representation of the output
σh(W̄ h

x̄).
Clearly, more than two layers can be stacked in the same architecture. In general,

layers in feed-forward NNs can be combined in more complex ways provided that no
feedback connections are used. For example, skip-connections allows to connect a
neuron in the i-th layer directly with a neuron in the i+ k-th layer, with k > 0 [22].
Furthermore, a network can be sparse, with not all the possible connections within a
layer being present [22]. Also, it is possible to use the same parameters in different
points of the networks; this technique is usually referred to as weight sharing [22].
For example, the Convolutional Neural Network [106] is a common feed-forward NN
architecture which extensively uses weight sharing and sparse connections.

The architecture of a network depicts the sequence of operations that should
be performed on the input x to obtain the network output y. Commonly, this is
also defined as computational graph [68] and it plays also a key role in the learning
procedure.

Hypothesis space. The hypothesis space of NNs can be defined as the set of func-
tions which can be computed by its computational graph. For example, in the case
of a two layer MLP, it can be defined as H = {g(·, W̄ h, W̄ y) = σy(W̄ y σh(W̄ h·)) |
W̄ h ∈ RC×(M+1), W̄ y ∈ RK×(C+1)}, where the dot · is a placeholder for the input
vector. In general, let g(·, θi, . . . , θD) be a computational graph of a NN with parame-
ters {θi, . . . , θD}; its hypothesis space can be defined as H = {g(·, θi, . . . , θD) | ∀i ∈
[1, D]. θi ∈ W}, where W is a suitable parameter space. Thus, we can modify the
hypothesis of NN space by modifying its computational graph.

Nevertheless, it can be shown that a MLP with a linear activation function in
the output layer and a sigmoid activation function in the hidden layer is able to
represent any Borel measurable function from one finite-dimensional space to another
with an arbitrary precision [87, 43]. This theorem (usually referred to as universal
approximation theorem) assumes that the width of the network (i.e. the number of
neuron in the hidden layer) is not fixed. Nevertheless, it has limited impact in practice

2.3. Learning with Structured Data 17

due to two main reasons. First, the hidden representation size is fixed indeed; the
theorem does not provide any insight on how large this should be to represent the
desired function. Second, even if we assume that the network is large enough to
contain the desired function in the hypothesis space, we have no guarantee that the
learning algorithm will find such a hypothesis [68].

Learning. In our thesis, we deal with NNs in the supervised setting. Let (x,y∗) be
a supervised sample and let y = g(x, θ) be the output of a NN with parameters θ,
the empirical error defined in Eq. (2.2) can be rewritten as:

J(θ) =
N∑
i=1

J (y∗i , g(xi, θ)) . (2.12)

Most training algorithms involve an iterative procedure to minimise the empirical
error. At each step, we can distinguish between two distinct stages. In the first stage,
the gradients of the cost function with respect to the model parameters are evaluated.
In the second stage, such gradients are used to update the parameters.

The Back-Propagation (BP) algorithm [144] is a general algorithm that allows
computing gradients efficiently when a chain of operations is performed.. In the case
of NNs, it is applied to compute the gradient of J(θ) with respect to θ. The core of
the BP algorithm is the chain rule of calculus. Let y = φ(x) andcz = ψ(y), the chain
rule states:

∇xz =
(
δy

δx

)T
∇yz, (2.13)

where Jφ =
(
δy
δx

)
is the Jacobian matrix of the function φ. The gradient ∇yz can

be further decomposed as JT
ψ
δz
δz = JT

ψ 1, where Jψ =
(
δz
δy

)
is the Jacobian matrix of

the function ψ. Hence, we obtain that ∇xz = JT
φ J

T
ψ ; the desired gradient can be

computed just multiplying the transpose of the Jacobian matrix of the function used
to compute the output z.

The BP essentially applies the chain rule recursively over the computational graph
of a generic function f . In the case of NNs, it is applied to the computational graph
of J(θ).

2.3 Learning with Structured Data

In this Section, we introduce some basics for learning with structured data. In Section,
2.3.1 we introduce the general framework for adaptive processing of structured data
introduced in [58]. Then, we show instantiations of this framework on sequence and
Directed Oriented Acyclic Graph domains in Section 2.3.2 and in 2.3.3 respectively.

18 Chapter 2. Background and Related Works

2.3.1 General Framework for Processing Structured Data

The framework for adaptive processing of structured data adopted in this thesis
has been introduced by Frasconi et al. to unify probabilistic and neural models
for structured domains [58]. Before introducing the aforementioned framework, we
formally define the concept of structured data.

Structured Data

A Directed Oriented Acyclic Graph (DOAG) is a directed acyclic graph where it exists
a total order on the edges leaving from each vertex [58].

Definition 2.5 (DOAG [58]). A DOAG D is a pair (vert(D), edg(D)), where v ∈
vert(D) is a vertex (or node) and (v, u, l) ∈ edg(D) is an edge from node v to node u
in position l. Also, it holds:

(v, u, l) ∈ edg(D) ∧ (v, u′, l) ∈ edg(D) =⇒ u = u′.

Let D a DOAG and v ∈ vert(D) a node, we denote by ch(v) the set of child nodes
of v, by de(v) the set of all descendants node of v and by pa(v) the set of parent nodes
of v. The cardinality of the set ch(v) and pa(v) are the out-degree and in-degree of v,
respectively. The out-degree of D is the maximum out-degree of all its nodes, i.e. the
maximum number of children that a node in D can have. Similarly, the in-degree of
D is the maximum in-degree of all its nodes, i.e. the maximum number of parents
that a node in D can have. A node s ∈ vert(D) is called super-source if every node
u ∈ vert(D) can be reached by a directed path starting from s. On the contrary, a
node which has no out-going edges is referred to as sink.

By definition, a DOAG imposes an order among child nodes of a given node v
since all the edges leaving from v are ordered. Moreover, the position uniquely identify
out-going edges. Hence, we can denote by chl(v) (or more concisely vl) the child node
of v in position l, i.e. the triplet (v, chl(v), l) ∈ edg(D). With no loss of generality, we
assume l ∈ [1, |ch(v)|] for each edge (v, u, l) ∈ edg(D).

In Figure 2.3a, we show an example of DOAG. Node 1 is the super-source of D.
Node 2 has three children: Node 4, Node 5 and Node 6, i.e. ch(2) = {4, 5, 6}. We
always assume that children are ordered from left to right; hence, the left-most child
is in the first position, i.e. ch1(2) = 4. Similarly, ch2(2) = 5 and ch3(2) = 6.

We use the symbol # to denote the class of all DOAGs with a bounded (but
unspecified) maximum in-degree and maximum out-degree. If such bounds are known,
we denote by #P

L the set of all DOAGs having maximum out-degree of L and a
maximum in-degree of P . Also, we assume these sets contain only structures that
possess a super-source or that are empty, i.e. without nodes. It is worth highlighting
that we can always add a super-source node to a DOAG to satisfy this constraint [58].

In the context of learning, structures are used to store information. To this end, we
assume that all structures are labelled, i.e. labels can be attached on edges and nodes.

2.3. Learning with Structured Data 19

1

3 2

4 5 6

skel(X) ∈ #2
3

ch(2)

pa(4)

ch1(2) ch2(2) ch3(2)

(a) The skeleton of X .

x1

x3 x2

x4 x5 x6

X 2

(b) A labelled DOAG X .

Figure 2.3: A labelled DOAG and its skeleton.

With no loss of generality, we assume that information are always stored in nodes [58].
The label associated with a node can be either numerical (it takes a continuous value,
e.g. a scalar in R or a vector in Rn) or categorical (i.e. its value is taken from a finite
set). Let a node v ∈ vert(D), we denote by xv ∈ X the label attached to v.

To simplify the notation introduced, we implicitly assume that the lowercase letter
used to indicate a label indicates its domain, e.g. xv ∈ X and yv ∈ Y . We extend this
assumption also on the letter used to denote DOAGs, which indicates the domain of
its labels. For example, we indicate by X a labelled DOAG whose labels are taken
from X and Y a labelled DOAG whose labels are taken from Y. We also denote
by skel(X) the unlabelled DOAG obtained ignoring all labels in X . We combine
the notations used to indicate a structured space and a label domain in the symbol
X#P

L , which denotes the set of all labelled DOAGs having maximum out-degree of L,
maximum in-degree of P and whose labels are taken from X . In Figure 2.3b, we show
an example of labelled DOAG D ∈ X#2

3 , hence all labels are taken from X . Each
node v ∈ vert(D) has the label xv ∈ X . Its skeleton skel(D) is the DOAG depicted
in Figure 2.3a. Moreover, we indicate by X v the sub-structure which contains only
descendants nodes (with their labels) de(v) and v itself (see Figure 2.3b).

In the next paragraphs we introduce two particular type of DOAG class: sequences
and trees.

Sequences. Sequences are DOAGs which belong to the class #1
1, i.e. DOAGs with

a maximum out-degree and maximum-in degree of one. Sequences nodes are usually
referred to as elements. Edges of a sequence define a total order among its elements; in
temporal sequences, such a total order is used to associate a time-step for each element.
In our definition, the temporal order is the opposite of the topological order of the
structure (see Figure 2.4a). The super-source (the head of the chain) corresponds to
the last time step in the sequence; thus, time indexes decrease following the direction
of the arrows. In the rest of the work, we always use the topological order; to prevent
confusion, we always use pa(v) and ch(v) and to indicate the predecessor and the

20 Chapter 2. Background and Related Works

y4 y3 y2 y1

Time

(a) A labelled sequence Y ∈ Y#1
1 .

x1

x2

x4 x5

x3

(b) A labelled binary tree X ∈ X#1
2 .

Figure 2.4: A labelled sequence and a labelled tree.

successor of an element v. Note that in the case of sequences, the child position is
useless.

Trees. Trees are DOAGs which belong to the class #1
L, i.e. DOAGs with a maximum

out-degree of L and a maximum in-degree of 1. The super-source tree node is referred
to as root, while sink nodes are referred to as leaves. The maximum out-degree is also
referred to as the arity of the tree. For example, in Figure 2.4b, we show a labelled
binary tree (i.e. a tree with L = 2).

Structural Transductions

A transduction is a function between two structured domains; for example, τ : X# →
Y# denotes a transduction between two structured domains X# and Y# [58]. Hence,
Y = τ(X) is the structure obtained by applying the transduction τ(·) to X .

A transduction τ(·) is isomorphic if it generates an output structure with same
skeleton as the input structure, i.e. skel(τ(X)) = skel(X) [58]. In other words, an
isomorph transduction is a function which associates an output label for each input
vertex. If such a function does not depend on the node on which it is applied (i.e. the
same function is applied to each node), the transduction is stationary.

An isomorph transduction is algebraic, or unstructured, if the output label of each
node v ∈ vert(X) depends only on the input label xv [58]. In this case, the transduction
can be computed applying a function to each input label; the input structure does not
provide any further information necessary to compute the transduction. By contrast,
in a non-algebraic isomorph transduction, the output label of each node v also depends
on the contextual information provided from the structure.

Causal transductions are a particular case of non-algebraic isomorph transductions,
in which the contextual information exploited to determine the output label of a node
v belongs only to the descendant vertices of v [58].

In the context of learning, a key role is played by causal isomorph transductions
which admit a recursive state-representation.

Definition 2.6 (Recursive transduction [58]). An isomorph stationary transduction
τ : X# → Y# admits a recursive state-representation if there exists a structured space

2.3. Learning with Structured Data 21

H# and two functions:

f : X ×H× · · · × H → H, (2.14a)

g : H → Y, (2.14b)

such that, for all X and Y = τ(X), there is a H ∈ H# with skel(X) = skel(Y) =
skel(H) and it holds:

hv = f(xv, hv1, . . . , hv|ch(v)|), (2.15a)

yv = g(hv), (2.15b)

for each node v ∈ vert(X).

The function f(·) and g(·) are referred to as the state-transition function and
the output function, respectively; the structure H is referred to as the hidden state-
representation of the transduction. Each label hv ∈ H attached to a node v ∈ vert(H)
is referred to as the hidden state of v.

The state-transition function and the output function state clearly the causal
dependencies among input labels, hidden states and output labels assumed by the
transduction. The function f indicates that the hidden state of a node depends on
its input label and the hidden states of all its child nodes. The set {hv1, . . . , hv|ch(v)|}
represents the contextual information which are exploited to determine the hidden
state of the node v and it usually called context. The function g indicates that the
output label of a node depends only on its hidden state.

The state-transition function allows computing hidden states recursively over the
structure. The recursion scheme of f(·) is given by the input DOAG structure skel(X);
however, while the DOAG defines a topological order which goes from the super-source
to the sinks, the computation of the hidden states starts from the sinks and terminates
at the super-source. The special hidden state ⊥ is used to indicate the absence of a
child node (necessary to define the recursion schema also on the sink nodes). The
output function, instead, computes the output labels directly from the hidden states.
Commonly, this recursive procedure can be represented graphically unfolding the
recursive schema on the input structure. This representation is denoted by encoding
network [58].

The concept of transduction can also be interpreted from a probabilistic point
of view [58]. In this sense, a probabilistic transduction is a joint distribution P (Y |
X) ∝ P (X ,Y) defined over X# × Y#, where both the input and the output labels
are assumed to be realisations of different random variables. All the other properties
introduced previously on deterministic transduction can be obtained by adding specific
constraints on the joint distribution. If the probabilistic transduction admits a
recursive state representation, also the hidden states are assumed to be realisations of
random variables; the state-transition and the output function are usually referred to
as state-transition and output distribution, respectively.

22 Chapter 2. Background and Related Works

In some cases, it is useful to model a transduction which has a non-structural
output (e.g. structure classification) [58]. Even if it is not an isomorph transduction,
it can be easily implemented in the same framework by applying the output function
only to the super-source node; the hidden states are always computed on the whole
structure by the state-transition function. In some cases, the output function is
applied to an aggregated representation of all hidden states rather than only on the
super-source hidden state.

In the next paragraph, we show an example of recursive transduction.

Example of Recursive Transduction on Trees. Let us consider an isomorph
transduction eval : X#1

2 → Y#1
2 between binary trees which evaluates mathematical

expressions on integers. The input structure represents the parse tree of the expression;
the input label domain is X = Z ∪ {+,−, ∗, /}. The output of the transduction is a
new structure with the same skeleton of the input one; the output labels represent
all the intermediate results of the evaluation. Hence, the transduction eval(·) can be
completely defined by the state-transition function φ:

hv = φ(xv, hv1, hv2) =

xv if hv1 = ⊥ ∧ hv2 = ⊥

hv1 + hv2 if xv = +

hv1 − hv2 if xv = −

hv1 ∗ hv2 if xv = ∗

hv1/hv2 if xv = /

, (2.16)

and the output function ψ:
yv = ψ(hv) = hv, (2.17)

which is the identity function.
In Figure 2.5, we show the application of eval to the parse tree of the expression

4 + (2 ∗ 3). We depict the interactions among the input labels, the output labels and
the hidden states in the encoding network. In this case, the network has no particular
meaning; it is simply a graphical support for the recursion schema.

The first step is the computation of the function φ applied to the sinks (the base
case of the recursion): by the definition of φ in Eq. 2.16, the hidden state is equal to
the input label on sink nodes. Then, also the sink output labels can be computed by
applying the output function ψ on their hidden states.

In the second step, the function φ can be applied only to the node v which has the
input label ∗. In fact, it is the only node such that all the hidden states of its children
have been already computed; hence, by the definition of φ, hv = hv1 ∗ hv2 = 2 ∗ 3 = 6.
Applying the function ψ, its output label yv is computed as well.

Finally, the hidden state of the super-source s can be computed, i.e. the node
which has the input label +: by the definition of φ and ψ, hs = 4 + 6 = 10 and ys = 10.
This terminates the recursion since all the hidden states and all the output labels are

2.3. Learning with Structured Data 23

+

4 ∗

2 3

h1

h2

⊥ ⊥

h3

h4

⊥ ⊥

h5

⊥ ⊥

4

+

∗

2 3

y2

y1

y3

y4 y5

h1

4

⊥ ⊥

h3

2

⊥ ⊥

3

⊥ ⊥

4

+

∗

2 3

4

y1

y3

2 3

h1

4

⊥ ⊥

6

2

⊥ ⊥

3

⊥ ⊥

4

+

∗

2 3

4

y1

6

2 3

10

4 6

2 3

eval(·)

Figure 2.5: An isomorphic transduction which evaluates expression
on integers.

computed. Hence, we can build the output structure extracting output labels from
the encoding network.

We can define the equivalent super-source transduction of eval(·) as a transduction
that computes only the final result of the expression (rather than a structure with
all intermediate results). The hidden state are computed through the same recursion
scheme depicted in Figure 2.5; nevertheless, the output function is applied on the
super-source node, obtaining only the value 10.

Supervised Learning on Structured Domains

In our work, we mainly focus on supervised learning tasks on structured domain. As in
the flat domain, we can define these tasks as the estimation of an unknown function τ :
X# → Y# from a set of input-output structure pairs D̂ = {(X 1,Y1), . . . , (XN ,YN)}.
Clearly, the function τ(·) is a transduction.

While learning general transductions is an interesting active research field (e.g.
[158, 34, 54, 32]), in this thesis we focus on recursive transductions. Thanks to this
constraint, we can reduce the learning of the whole transduction τ(·) to learning of
the state-transition function f and the output function g.

In the next two sections, we show instantiations of this framework on sequences
and DOAGs which are particularly relevant for our work. In particular, we focus on
probabilistic and neural instantiations where the functions f and g are implemented
as probability distributions and neural networks, respectively.

Note that these two class of models also include other formalisms used in the
context of structured data. For example, probabilistic automata are a particular
case of the hidden Markov models that will be discussed in the next sections [52, 50].

24 Chapter 2. Background and Related Works

Similarly, weighted automata [49] can be obtained removing the non-linearity in the
definition of the neural networks that will be introduced in the next sections.

2.3.2 Recursive Models for Sequences

In this section, we describe examples of models which are able to learn recursive
transductions on the sequence domain.

Hidden Markov Models

The Input-Output Hidden Markov Model (IO-HMM) [20] is a probabilistic model
which is able to learn recursive transduction on sequences. To this end, it associates
three random variables for each element v in the input sequence X : Xv is the random
variable whose realisation is the input label xv; Yv is the random variable associated
with the output label yv; Hv is the random variable which models the hidden state hv.
The hidden random variables are discrete, while the type of the input and the output
variables depends on their respective label domains.

The interactions among these variables is completely defined by the state-transition
and the output (or emission) distribution. Since IO-HMM operates on sequences, the
state-transition distribution P (hv | hch(v)) models the dependency between the hidden
state hv and its child hidden state hch(v). This assumption ensures that the hidden
process is Markovian, i.e. its current state depends only on its previous (child) state.
On the other hand, the output distribution P (yv | hv) models the dependency between
the output label yv and the hidden state hv. By applying these two distributions
recursively over the input structure, we obtain the following complete data likelihood:

P (Y ,H | X , θ) =
∏

v∈vert(X)
P (yv | hv, θy)P (hv | xv, hch(v), θh), (2.18)

where Y and H are the set of all the output labels and the hidden states, respectively;
θ = {θh, θy} are the IO-HMM parameters. This factorisation of the joint probability
can be represented as a BN, which is the encoding network of the recursive model.
Clearly, the Markovian property ensures that each hidden variable Hv block all paths
between its ancestors and its descendants. Such independence assumptions reflect
causalities assumed by recursive structural transduction. The likelihood of the output
sequence can be obtained by marginalising all the hidden variables.

If the input structure is missing, IO-HMMs reduce to standard Hidden Markov
Models (HMMs), making them suitable also for unsupervised tasks.

The parameters of IO-HMMs can be learned by applying a specialisation of the
EM algorithm (see Section 2.2.1) [20]. This specialisation is obtained by a slight
modification of the Baum-Welch algorithm [18] (i.e. the EM applied to HMMs). While
the derivation of the M-step is straightforward, the computation of the posteriors in
the E-step requires a recursive processing of the input sequence. Such an algorithm is
usually referred to as forward-backward procedure [18] since it comprises two recursive

2.3. Learning with Structured Data 25

passes: a forward pass which goes from the sink element of the sequence to its
super-source, and a backward pass which goes back from the super-source to the sink.

Recurrent Neural Networks

Recurrent Neural Networks (RNNs) [53] represent a class of neural networks which
are able to learn recursive transductions on sequences. The basic idea of RNNs is to
implement the state-transition function and the output function by means of neural
networks. The NN that implements the state-transition function is referred to as the
hidden layer, since it computes the hidden states. Similarly, the NN that implements
the output function is referred to as the output layer. RNNs assume that input labels,
output labels and hidden states are vectors of possibly different size. Let v be an
element of the input sequence X , then xv ∈ RM ,yv ∈ RK and hv ∈ RC are its input
label, output label and hidden state, respectively. Thus, the two neural layers are
defined by the following equations:

hv = σ(W hxv +Uhhch(v) + bh), (2.19a)

yv = φ(W yhv + by), (2.19b)

where θh = {W h,Uh, bh} and θy = {W y, by} are the parameters of the hidden and
the output layer, respectively. The matrix Uh is usually referred to as the recurrent
weight matrix since it is the matrix which is applied recursively to the hidden state.
σ and φ are non-linear activation functions, e.g. the sigmoid function.

By unfolding these two layers on the input structure, we obtain a multi-layer feed-
forward NN whose architecture matches the input structure and whose parameters
are shared by each element. Such a feed-forward NN is the encoding network of the
RNN and it reflects the causality assumptions induced by the recursive transduction.

RNNs are usually trained by minimising a loss through gradient descent. The
computation of the loss gradients with respect to the model parameters is performed
by the Back-Propagation Through Time (BPTT) algorithm [172]. The BPTT is
essentially the application of the standard BP algorithm to the encoding network of
RNNs. It is worth highlighting that a truncated version of BPTT is also used [115],
where the gradient is not back-propagated for the whole sequence. Nevertheless, in
this thesis we always use the standard BPTT algorithm.

Unfortunately, if the gradient propagated through many layers (in RNN, the
number of layers depends on the number of elements in the input sequence), it tends
to vanish or explode [85, 130]. In the next paragraph we show a very common solution
to this problem which relies on the definition of a new neural state-transition function.

Long Short-Term Memory Networks. The Long Short-Term Memory (LSTM)
network [85] is a particular type of RNN in which the state-transition function is
implemented by a LSTM cell. The LSTM cell is defined by the following set of

26 Chapter 2. Background and Related Works

equations:

iv = σ
(
W ix+U ihch(v) + bi

)
, (2.20a)

ov = σ
(
W ox+U ohch(v) + bo

)
, (2.20b)

uv = σ
(
W ux+Uuhch(v) + bu

)
, (2.20c)

fv = σ
(
W fxv +U fhch(v) + bf

)
, (2.20d)

cv = iv � uv + fv � cch(v), (2.20e)

hv = ov � tanh(cv), (2.20f)

where iv ∈ RC , ov ∈ RC , fv ∈ RC , uv ∈ RC are referred to as the input gate, the
output gate, the forget gate, the update value, respectively; c ∈ RC represents the
memory cell. The non-linearity σ is usually the sigmoid function and the symbol �
denotes the element-wise multiplication.

The gates control the dynamic of the hidden state, allowing, for example, to ignore
new elements in favour of previous ones. The idea of introducing gates to compute
the hidden state of the current element has been firstly introduced in leaky units [121,
82]. In LSTMs, the gate values are computed by applying a single layer NN on the
current input label x and on the hidden state of the child node hch(v); hence, the
gate values are adapted at each element of the sequence. By observing the Eq. (2.20),
it is clear that each neural layer used to compute these values is equal to the RNN
hidden layer defined in Eq. (2.19a). Since the LSTM cell contains four gates, it follows
that the number of parameters required by a LSTM cell is four times the number of
parameters required by a RNN.

LSTMs are usually trained by minimising a loss through gradient descent. The
computation of loss gradients with respect to the model parameters can be computed
using the BPTT algorithm. Also in the case of LSTM, truncated version of BPTT
can be applied [72]. Nevertheless, we always use the standard BPTT algorithm.

2.3.3 Recursive Models for Highly-Structured Domains

In this section, we describe examples of models which are able to learn recursive
transductions on the DOAG domain.

Hidden Recursive Model

The Hidden Recursive Model (HRM) [58] is a probabilistic model which can learn
recursive transductions between two structured spaces X#P

L and Y#P
L . As in IO-HMM,

HRM defines a triplet of random variables (Xv, Hv, Yv) for each node in the input
structure. The interactions among these variables is completely defined by the state-
transition distribution and the output distribution. By unfolding these distributions

2.3. Learning with Structured Data 27

on the input structure, we obtain the following complete likelihood:

P (Y ,H | X , θ) =
∏

v∈vert(X)
P (yv | hv, θy)P (hv | xv, hv1, . . . , hvL, θh), (2.21)

where again Y and H represent the set of all the output labels and the hidden states,
respectively; θ = {θh, θy} are the HRM parameters. Note that since we are dealing
with DOAGs which have a maximum out-degree of L, the state-transition function
should consider the hidden state of L child nodes. As we will show more in details in
Section 3.2.1, this leads to a state-transition distribution which requires a number of
parameters which grows exponentially with respect to L.

Due to this limitation, HRM has been applied only to DOAGs with a limited
maximum out-degree, e.g. sequences and binary trees [58]. It is worth highlighting
that IO-HMM correspond to the application of HRM to the sequence domain.

The first practical approximation which overcomes this limitation is the Switching-
Parent Bottom-Up Hidden Tree Markov Model (SP-BHTMM) [12]. SP-BHTMM
approximates the state-transition distribution as a mixture of simpler distributions,
requiring a number of parameters which grows linearly with respect to L. SP-BHTMM
has been also extended to perform transductions [11]. We introduce this approximation
in details in Section 3.3.1, with emphasis on the independence assumption introduced
to reduce the number of model parameters.

The HRM learning procedure depends on the class of the input structure. If the
input structure is not singly-connected (i.e. between two nodes in the structure there
is at most one directed path), exact inferences cannot be computed on the encoding
network [58]; the input structure must be “compiled” into a new structure, called
junction-tree [17]. Note that we must apply this compilation step to each structure
in the dataset every time it should be processed, making the learning algorithm
computationally demanding. Moreover, in the case of densely connected DOAGs, even
the inference on junction trees can be intractable.

On the other hand, if the input DOAG is singly connected, the HRM parameters
can be learned by a specialisation of the EM algorithm. As in the case of IO-HMMs,
the computation of the posteriors in the E-step requires a recursive processing of
the input structure. In this case, this recursive procedure is usually referred to as
upward-downward procedure [51, 12], since it requires an upward recursive pass which
goes from the sink nodes to the super-source and a downward recursive pass which
goes from the super-source to the sink nodes. Such a specialisation has been defined
only for binary trees [58]. In the case of SP-BHTMMs, a tailored version of the EM
algorithm has been introduced without any restriction on the maximum out-degree of
the input tree structures [12].

Recursive Neural Networks

First-order Recursive Neural Networks (RecNNs) [58] are neural models which are
able to learn recursive structural transductions between two structured spaces X#P

L

28 Chapter 2. Background and Related Works

and Y#P
L . To this end, first-order RecNNs define two different single layer NNs to

implement the state-transition and the output function of the recursive transduction.
Let v be a vertex of the input structure X , xv ∈ RM be its input label, yv ∈ RK be
its output label and hv ∈ RC be its hidden state. Then, the two neural layers are
defined by the following equations:

hv = σ

(
W hxv +

L∑
l=1
Uh
l hvl + bh

)
, (2.22a)

yv = φ(W yhv + by), (2.22b)

where θh = {W h,Uh
1 , . . . ,U

h
L, b

h} and θy = {W y, by} are parameters of the hidden
and the output layer respectively; σ and φ are the activation functions. The state-
transition function requires L recurrent weight matrices, one for each child node. Hence,
the number of parameters increases linearly with respect to the maximum out degree L.
This is in contrast to HRMs parametrisation, which has an exponential relation with
respect to L. As we will show in Section 3.3.2, this complexity reduction is obtained
by implicitly imposing an independence assumption between child contributions.

Unfolding these two layers on the input structure, we obtain a multi-layer feed-
forward NN whose architecture matches the input structure and whose parameters
are shared by each node. Such a feed-forward NN is the encoding network of the
RecNN. As feed-forward NNs, also RecNNs are usually trained by minimising a loss
through gradient descent. The computation of the loss gradients with respect to the
model parameters is performed by the Back-Propagataion Through Structure (BPTS)
algorithm [67], i.e. the application of the BP algorithm to generic DOAGs.

The problem of vanishing and exploding gradient could also appear in RecNNs,
but it is less frequent since usually the input structures do not have long dependencies.
Nevertheless, the LSTM cell has been extended also for tree structure.

Tree-Structured LSTM. Tree-LSTM [159] are a specific type of RecNNs which
implement the state-transition function through a LSTM cell. The cell definition is

2.4. Tensors 29

modified as follows to consider the increased number of child nodes:

iv = σ

(
W i +

L∑
l=1
U i
lhvl + bi

)
, (2.23a)

ov = σ

(
W o +

L∑
l=1
U o
lhvl + bo

)
, (2.23b)

uv = σ

(
W u +

L∑
l=1
Uu
l hvl + bu

)
, (2.23c)

fvk = σ

(
W fxv +

L∑
l=1
U f
klhvl + bfk

)
∀k ∈ [1, L], (2.23d)

cv = iv � uv +
L∑
l=1
fvl � cvl, (2.23e)

hv = ov � tanh(cv), (2.23f)

where i, o, u and c are the input gate, the output gate, the update value and the
memory cell, respectively. Note that the Tree-LSTM cell introduces a different forget
gate for each child node. Hence, the forget gate fvk regulates the information flow
between the node v and its k-th child node ch(v)k.

Since each gate is computed through a single layer NN equals to the first-order
RecNN hidden layer (see Eq. (2.22a)), the number of parameters required by a
Tree-LSTM is L+ 3 times the number of parameters required by a first-order RecNN.

Tree-LSTMs are trained by gradient descent algorithms. The gradients of the
cost function with respect to the parameters are computed by applying the BPTS
algorithm.

2.4 Tensors

In this section we introduce tensors and the basic operations on them. A particular
emphasis is placed on the tensor decompositions, which play a fundamental role in
our thesis.

2.4.1 Definitions and Notations

Tensors are generally defined as multidimensional arrays.

Definition 2.7 (Tensor [99, 36, 90]). A D-way (or Dth order) tensor T ∈ RI1×···×ID

is a multi-dimensional array with D dimension (or way or mode), i.e. T [i1, . . . , iD]
is an entry of T such that for each d ∈ [1, D] the index id ∈ [1, Id]. Id is the size
associated with the d-th dimension.

From the definition, it is clear that tensors generalise the widespread concepts of
vectors and matrices. In particular, a 1-way tensor is called vector and we denote it
by a bold lowercase letter: a ∈ RN is a vector of size N . A 2-way tensor is called

30 Chapter 2. Background and Related Works

matrix and we denote it by a bold uppercase letter: U ∈ RN×M is a matrix of size
N ×M . A tensor with more than 2 dimension is called high-order tensor and we
denote it by an underlined bold uppercase letter, e.g. T . For the sake of simplicity,
we use the word tensor to indicate a high-order tensor.

For example, let T ∈ RI1×I2×I3 be a three-way tensor (see Figure 2.6a); T has
three dimensions having size I1, I2 and I3 respectively. We can access the entries of
T by specifying an index for each mode: T [i1, i2, i3] indicates the entry of T at the
i1-th position on the first dimension, the i2-th position on the second dimension and
the i3-th position on the third dimension.

A downside of the definition of tensors as multidimensional arrays is that it does
not emphasise the relation between tensors and multi-linear functions, i.e. multi-variate
functions that are linear in each argument [70]. It can be shown that every multi-linear
function can be represented as a tensor [70]. Let f : RI1 × · · · × RID → RK be a
multi-linear function and let a1, . . . ,aD be a collection of vectors where each ad ∈ RId ;
then, it exists a tensor T ∈ RI1×···×ID×K such that:

f(a1, . . . ,aD) = T (a1, . . . ,aD) =
I1∑
i1=1
· · ·

ID∑
iD=1

T [i1, . . . , iD, :]a1[i1] . . .aD[iD], (2.24)

where, for the sake of simplicity, we denote directly by T (a1, . . . ,aD) the application
of the multi-linear map induced by T to the argument (a1, . . . ,aD). We always assume
that the output dimension is the last one.

The duality between multi-linear functions and tensors is the natural generalisation
of the best-known duality between linear functions and matrices. Nevertheless, such
a duality has deeper justifications that lie on the tensor product definition and its
universality as multi-linear map [70].

While we have shown that tensors are powerful objects, they suffer the so-called
curse of dimensionality [36]. In this context, we use this expression to indicate the
exponential relation between the number of entries, ID, of a D-way tensor of size
I × · · · × I and its order D [36]. Thus, working with high-order tensors becomes
prohibitive due to the computational and memory resources necessary to process and
to store such data.

For instance, let us consider a 12-order tensor T which has size 8 in each dimension,
i.e. I1 = · · · = I12 = 8. The space required to store T is 4 · 812 bytes, where 812 are
the number of entries of T and 4 is the number of bytes usually required to store
floating point numbers. Hence, T occupies 256 GB.

Before continuing with the introduction of tensor operations and tensor decompo-
sitions, it is useful to define particular types of tensors whose properties are used in
the reminder of the thesis.

Definition 2.8 (Rank-one tensor [99]). A D-way tensor T ∈ RI1×···×Id is rank-one if
it can be obtained as the outer product of D vectors, i.e.:

T = a1 ◦ a2 ◦ · · · ◦ ad, (2.25)

2.4. Tensors 31

i1
=

1
,...,I1

i2 = 1, . . . , I2
i3

=
1, .
. .
, I

3T

(a) The tensor T .

T [:, :, 1]

(b) Slice of T .

T [:, I2, 1]T [:, :I2 − 1, 1]

T [:, :, 1:]

(c) Sub-arrays of T .

Figure 2.6: A 3-way tensor T and its sub-arrays.

where the symbol ◦ denotes the outer product operation. Hence, each entry of T can
be written as:

T [i1, . . . , id] = a1[i1]a2[i2] . . .ad[id]. (2.26)

Definition 2.9 (Symmetric tensor [99]). A D-way tensor T ∈ RI×···×I is symmetric
(or super-symmetric) if its entries remain constant under any permutation of the
indices, i.e.:

T [i1, . . . , id] = T [π(i1, . . . , id)], (2.27)

where π is a permutation of indices i1, . . . , id.

Definition 2.10 (Non-negative tensor). A D-way tensor T ∈ RI1×···×Id is non-
negative if all its entries are positive or equal to zero, i.e.:

T [i1, . . . , id] ≥ 0. (2.28)

We denote a non-negative tensor as T ∈ RI1×···×Id
≥0 .

2.4.2 Operations on Tensors

In the following paragraphs we introduce three basic operation on tensors: indexing,
reshaping and tensor contractions.

Indexing

Indexing allow retrieving elements from a tensor. As we have already shown, we can
access tensor elements specifying one index for each dimension, e.g. T [i1, i2, i3].

Moreover, we use indexing also to retrieve tensor sub-arrays, i.e. subsets of the
tensor entries obtained fixing a subset of its indexes. We use the symbol “:” to indicate

32 Chapter 2. Background and Related Works

that an index is unspecified. For example, the yellow matrix in Figure 2.6b represents
the slice T [:, 1, 1] while the green vector in Figure 2.6c represents the fiber T [:, I2, 1].
We use the term fiber (slice) to indicate a sub-array that is a vector (matrix) [99].

With abuse of notation, we also allow to index a tensor by i:j, i.e. the list of
consecutive index values ranging from i to j; when the starting value is not specified
(i.e. :j), the range starts from 1; when the ending value is not specified (i.e. i:), the
range ends at the dimension size. For example, in Figure 2.6c, we divide the tensor T
in two parts: the slice A = T [:, :, 1] and the sub-tensor T [:, :, 1:] obtained removing
the slice A from T (the blue cube in the figure); then, we split the slice A in two parts:
its last column (i.e. the fiber T [:, I2, 1], the green vector in the figure) from the rest of
columns (i.e. the matrix T [:, :I2 − 1, 1], the red matrix in the figure).

Reshaping

Matricisation and vectorisation are operations that transform tensors into matrices
and vectors respectively. While these operations are very common in many scientific
computation packages, their formal definition is clumsy since it lies on the mapping
between lists of indices to a single index; we refer the reader to [36] for further details.

For our purposes, it is enough to understand the intuition of such operation. In
Figure 2.7, we show two reshaping of the T ∈ RI1×3×4. In the bottom part of the
figure, we reshape T into a matrix with I1 rows and 3× 4 columns; such a matrix is
obtained by concatenating all the mode-1 fibers of T . In general, we denote by T (n)

the n-mode matricisation of T , i.e. the matrix with In rows and
∏
k 6=n Ik columns

obtained concatenating all the n-mode fibers of T . Also, in the right part of the figure,
we transform T into a vector with I1 × 3× 4 entries by simply stacking all its entries.
We denote this reshaping operation by vec(T).

Tensor Contractions & Tensor Networks

The tensor contraction is a fundamental operation among tensors and can be considered
as a generalisation of the matrix multiplication [36]. Let A ∈ RI1×···×IR×J1···×JS

and B ∈ RI1×···×IR×K1···×KT , the tensor contraction between A and B is a new
C ∈ RJ1···×JS×K1···×KT whose entries are obtained as:

C[j1, . . . , jS , k1, . . . , kT]

=
I1∑
i1

· · ·
IR∑
iR

A[i1, . . . , iR, j1, . . . , jS]B[i1, . . . , iR, k1, . . . , kT]. (2.29)

At first, the contraction operation multiplies entries of the two input tensors. Then,
a summation is performed over “shared” dimensions which should have the same size.

For the sake of simplicity, we have assumed that the input tensors share the first
R dimensions. The tensor contraction can be easily extended to the more general
case in which shared dimensions can occupy any position; nevertheless, it requires

2.4. Tensors 33

T =

I1

4

3

T (1) =

3× 4

I1

vec(T) = I1 × 3× 4

Figure 2.7: Different reshaping of T ∈ RI1×3×4: T (1) is its 1-mode
matricisation while vec(T) is its vectorisation.

a cumbersome notation to identify such a mapping. To this end, it is convenient to
represent tensors and contraction operations as tensor networks [36].

A tensor network is a diagrammatic representation which has been used in various
context and therefore has been defined in multiple different ways. In our setting, it is
convenient to define a tensor network as an undirected hyper-graph [6], i.e. a graph
in which edges (called hyper-edges) can connect more than two nodes. Each vertex
represents a tensor while each hyper-edge represents a mode. If a hyper-edge connects
only one vertex, it is referred to as dangling edge. If a hyper-edge e connects more than
one vertex, the mode represented by e is “shared” among the vertices (i.e. tensors)
connected by e. Also, a label is attached to each hyper-edge to indicate the size of
the mode. The underlying assumption of the tensor networks is that a contraction is
always performed on all the shared hyper-edges. We clarify all these concepts by two
examples.

In Figure 2.8a, we show the tensor network of a tensor T ∈ RI1×I2×I3 : the hyper-
graph contains only one vertex and three hyper-edges. The vertex is represented as a
square box which contains the name of the tensor. Hyper-edges are lines and, in this
case, are connected only to T ; hence, they are dangling edges. We can deduce the
order of a tensor counting the number of edges connected to its vertex. In particular,
the dangling edge with the label I1 indicate the first mode of T , the dangling edge
with the label I2 indicate the second mode of T and the dangling edge with the label
I3 indicate the third mode of T . In this case, since there are no shared hyper-edges,
no contraction is performed.

Tensor networks become interesting when there is a hyper-edge which connects
more than one tensor. In Figure 2.8b, we show an example with three vertices: the

34 Chapter 2. Background and Related Works

T
I2 I3

I1

(a) T ∈ RI1×I2×I3

b

T W
M

I1

I2

I3

C

(b) C =
∑M

m=1 T [:, :,m]W [:,m]b[m]

Figure 2.8: Examples of tensor networks.

3-way tensor T ∈ RI1×I2×M , the matrixW×RI3×M and the vector b ∈ RM . Moreover,
there are three dangling edges (labelled with I1, I2 and I3) and a hyper-edge which
connects all three vertices. We graphically represent a hyper-edge as a black dot which
is connected by a line to all the vertices in the hyper-edge; hence, we can retrieve the
size of the hyper-edge (i.e. the number of vertices connected by it) by simply counting
the number of lines attached to the black dot. The label near the black dot is the label
attached to the hyper-edge. Hence, we have a hyper-edge of size 3 which connects T ,
W and b. Such a connection implies that these three vectors share the dimension M .
Therefore, the tensor network represents a tensor C obtained contracting T , W and
b along the mode of size M :

C[i1, i2, i3] =
M∑
m=1

T [i1, i2,m]W [i3,m]b[m]. (2.30)

Note that the dangling edges of the tensor networks represents the mode of the
tensor obtained after the contraction.

2.4.3 Tensor Decompositions

Tensor decompositions factorise tensors into a combination of simpler objects, referred
to as factors. Again, we can think of tensor decompositions as the generalisation of
matrix factorisations to the multi-dimensional case.

Tensor decompositions can be used to approximate tensors. As in the matrix
case, the approximation is usually referred to as low-rank approximation since it is
obtained constraining the decomposition rank. Each tensor decomposition define its
own generalisation of the concept of rank; thus, the same tensor has different ranks
according to different decompositions.

In the reminder of this section, we introduce three different tensor decompositions
that are fundamental for the developing of the thesis: the Canonical decomposition
[99], the Higher-Order Singular Value Decomposition [44] and the Tensor Train de-
composition [129]. Nevertheless, it is worth highlighting that there are other tensor
decompositions which play key roles in multiple contexts, e.g. the Tensor Ring decompo-
sition [181], the Hierarchical Tucker decomposition [73, 71], Projected Entangled-Pair

2.4. Tensors 35

States (PEPS) [168, 122]. We refer the reader to [36] for a comprehensive discussion
of the tensor decompositions not considered in this thesis.

Canonical Decomposition

The canonical decomposition has been introduced multiple times in the literature. In
1927, Hitchcock was the first to propose the idea of the polyadic form of a tensor,
i.e. expressing a tensor as the sum of a finite number of rank-one tensors [84, 83]. In
1944, a similar idea was proposed by Cattell in the context of psychological analysis
[30, 31]. Nevertheless, the decomposition starts becoming popular in 1970 in the form
of CANDECOMP [24] and PARAFAC [81]. Later, Kiers propose to standardise the
name of the decomposition as Candecomp/Parafrac (CP) [93].

Definition 2.11 (CP approximation [99]). The CP decomposition approximates a
D-way tensor T ∈ RI1×···×ID into a sum of R rank-one tensors :

T ≈
R∑
r=1

Xr =
R∑
r=1

xr1 ◦ xr2 ◦ · · · ◦ xrD. (2.31)

The last equality holds by the definition of rank-one tensor (see Definition 2.8).
The value of R represents the rank of the canonical approximation.

If we collate together all the vectors which operates on the same dimension (e.g.
the set X1 = {x11, . . . ,xR1} on the first dimension), we can define the factor matrices
X1, . . . ,XD of the decomposition. Hence, we can approximate entries of T as:

T [i1, . . . , iD] ≈
R∑
r=1

X1[i1, r] . . .Xd[iD, r], (2.32)

where the k-th factor matrix Xk has shape Ik ×R.
The canonical approximation can be represented as a tensor network in which

there is a vertex for each factor matrix and a hyper-edge that connects all the vertices
along the mode of size R; all the other modes I1, . . . , ID are represented by dangling
edges. For example, in Figure 2.9, we represent the canonical approximation of a
3-way tensor T ∈ RI1×I2×I3 .

CP-Rank. The CP-rank of a tensor T is defined as the smallest number of rank-one
tensors that generate T as their sum, i.e. is the smallest value of R which makes the
Eq. (2.32) an exact equality [99]. Hence, the CP-rank is the analogue of the matrix
rank in high-order tensors. Nevertheless, they exhibit different properties. The first
difference is that the rank of a real-valued tensors may actually be different over R and
C. The relation between real and complex rank is used to give an upper bound of the
real CP rank, which is mini∈[1,D]O(

∏
k 6=i Ik) in the worst case [16, 15]. Another major

difference is that the computation of the CP-rank of a general tensor is a NP-Hard
problem [99]. Hence, the exact CP decomposition can be obtained only attempting a

36 Chapter 2. Background and Related Works

X1

X2

I2

X3

I3

R

I1

Figure 2.9: Tensor network of the CP approximation of a 3-way
tensor.

perfect fit with values of R ∈ {1, 2, . . . }. Nevertheless, there is no perfect procedure
for fitting a CP decomposition for a fixed rank value [99]; the most used one is the
Alternating Least Square [36, 99].

Space required. The CP approximation with rank R of a tensor T ∈ RI1×···×ID

requires O(DRI) space, where I = maxk∈[1,D] Ik.

Higher-Order Singular Valued Decomposition

The High-Order Singular Value Decomposition (HOSVD) was first introduced by
Tucker in [164] to search relations in a three-way tensor of psychometric data [164].
Later, the Tucker decomposition has been generalised to n-way tensors by [44] with
the name HOSVD [44].

Definition 2.12 (HOSVD approximation [44]). The HOSVD decomposition approxi-
mates a D-way tensor T ∈ RI1×···×ID as:

T [i1, . . . , iD] ≈
R1∑
r1

· · ·
RD∑
rD

G[r1, . . . , rD]X1[i1, r1] . . . Xd[iD, rD], (2.33)

whereG ∈ RR1×···×RD is a D-way tensor called core tensor and X1 ∈ RI1×R1 , . . . XD ∈
RID×RD are the mode matrices associated to each tensor dimension. The values
R1, . . . , RD are the ranks of the approximation.

In the original definition by De Lathauwer et al., orthogonality and unitary
constraints are imposed on the core tensor and factor matrices, respectively. In our
definition, we have removed such constraints because they are not necessary for the
progress of our work. Nevertheless, we prefer to use the name HOSVD to emphasise
the interpretation of this decomposition.

The HOSVD approximation can be represented as a tensor network in which there
is a vertex for each mode matrix and a vertex for the core tensor. Then, the k-th
mode matrix is linked to the core tensor along the shared dimension Rk; all the other
modes I1, . . . , ID are represented by dangling edges. For example, in Figure 2.10 we
represent the HOSVD approximation of a 3-way tensor T ∈ RI1×I1×I3 .

2.4. Tensors 37

X1

G

X2

I2

R2

X3

I3

R3

R1

I1

Figure 2.10: Tensor network of the HOSVD approximation of a 3-way
tensor.

The HOSVD tensor network and the CP tensor network are similar: in the former,
all mode matrices are contracted together with the core tensor while in the latter
they are contracted together along the rank dimension. It can be shown that the CP
approximation is equivalent to the HOSVD approximation with a diagonal core tensor
[36].

n-ranks. The n-ranks of tensor T are the smallest values of R1, . . . , RD that make
the Eq. (2.33) an exact equality. The value of the rank along the n-th dimension can
be computed exactly since it corresponds to the rank of the matrix T (n) (the n-mode
matricisation of T , see reshaping operations in Section 2.4.2) [44]. This relation
between the n-ranks and the n-mode matricisation of T allows defining an algorithm
for the computation of the HOSVD based on the singular value decomposition of each
T (n) [44]. It follows that Rn ≤ In for each mode.

Space required. The HOSVD approximation with ranks R1, . . . , RD of a tensor
T ∈ RI1×···×ID requires O(RD + DIR) space, where R = maxk∈[1,D]Rk and I =
maxk∈[1,D] Ik. Hence, the space required still growths exponentially with respect to
the order tensor D.

Tensor-Train Decomposition

The Tensor-Train (TT) decomposition was introduced by Oseledets, aiming to define
a new tensor decomposition to overcome the limitations of the CP decomposition and
the HOSVD. Nevertheless, in the quantum physics community, the TT decomposition
has been known under the name Matrix Product States [55, 98, 133].

Definition 2.13 (TT approximation [129]). The TT decomposition approximates a
D-way tensor into D core tensors G1, . . . ,GD such that [129]:

T [i1, . . . , id] ≈
R1∑
r1

· · ·
RD−1∑
rD−1

G1[i1, r1]G2[r1, i2, r2] . . .GD[rD−1, id], (2.34)

where each core tensor Gk is a 3-way tensor of shape Rk−1 × Ik ×Rk (assuming that
R0 = RD = 1). The values of R1, . . . , RD−1 are the decomposition ranks.

38 Chapter 2. Background and Related Works

G1

I1

G2

I2

G3

I3

R1 R2

Figure 2.11: Tensor network of the TT approximation of a 3-way
tensor.

The TT approximation can be represented as a tensor network that contains
a vertex for each core tensor G1, . . . ,GD. Then, adjacent core tensors are linked
together along the shared mode, i.e. Gk is linked to Gk+1 along the mode Rk; all the
other modes I1, . . . , ID are represented by dangling edges. For example, in Figure
2.11, we represent the TT approximation of a 3-way tensor T ∈ RI1×I1×I3 .

TT-ranks. The TT-ranks of a tensor T are the smallest values of R1, . . . , RD−1

which make the Eq. (2.34) an exact equality. Each of these values is related to the rank
of a particular matricisation of T [129]. This relation allows to define a straightforward
algorithm for the computation of the TT decomposition based on the singular value
decomposition of such matricisations [129]. Then, the upper bound of each TT-rank
is related to the size of such a matrix.

Space required. The TT approximation with ranks R1, . . . , RD of a tenor
T ∈ RI1×···×ID requires O(DIR2 + IR) space, where R = maxk∈[1,D]Rk and
I = maxk∈[1,D] Ik.

2.4.4 Tensors and Machine Learning

In the last decade, an interest in tensors and their decompositions has emerged in
the machine learning community. This interest is firstly motivated by the natural
representation of multi-modal data, such as RGB images, videos or signals, using
tensors. Certainly, the most popular approach to process such a rich data structure
is the multi-way data analysis. In this area of research, tensor decompositions are
used to process data and reveal complex relationships in them, without resorting to
external learning models [99, 1, 37].

Although, also learning models has been adapted to handle this type of data.
For example, in [160] the authors adapt most of the linear vector models (e.g. linear
regression, Support Vector Machine) to tensor data (e.g. multi-linear regression,
Support Tensor Machine). On the same line, the authors in [137] develop a low-
rank model to handle output tensor data. Regarding neural networks, the Tensor
Contraction Layer and Tensor Regression Layer has been introduced empowering NNs
to handle tensor data [100]. Clearly, these approaches require parameters which are
tensors themselves: due to their curse-of-dimensionality, low-rank approximation of
the tensors parameters are necessary to make these approaches feasible in practice.

The usage of tensor decompositions with low rank constraints has been successfully
applied also to compress NN layers such as feed-forward [125, 23], convolutional

2.4. Tensors 39

[105] and recurrent [163]. In some cases, to take advantage of the decomposition, it
is necessary to reshape weight matrices and input vectors in tensors (this process
is usually called tensorisation). However, it is not always clear what is the best
tensor shape to select. The compression ability of the tensor decompositions has been
exploited also in probabilistic models [126, 176].

The usage of tensors as parameters is useful also to model higher-order interactions
among inputs. While this possibility has been discussed in the literature with the
introduction of the High-Order NN [65], less attention has been paid on the possibility
to use tensor decompositions to reduce the complexity of such networks. Notable
exceptions are [156, 127], where the TT decomposition is applied to reduce the
complexity of models which consider higher-order interactions among vector entries.
Hence, higher-order interactions are usually computed only for a small number of
inputs. For example, in [19], the authors use tensors to fuse visual and textual
representations; in [171], the authors use tensors to combine predicate, object and
subject in event triplets.

If we turn our attention on learning models for structured data, seminal papers
such as [116] and [58] highlight the possibility to model higher-order interactions among
structure constituents. Nevertheless, in practice, only the interactions among a small
number of constituents are modelled as tensors. For example, in [153], the authors
proposed a model that leverage tensors to aggregate child information in binary trees.
As far as we know, [178] is the only work which applies the TT decomposition to
reduce the complexity of High-Order RNNs.

Another interesting connection between tensors and structured data arises con-
sidering weighted automata. For example, in [138], the authors show that weighted
finite automata and linear second-order RNNs have the same expressive power when
considering input sequences of discrete symbols. Also in the case of tree-structured
data, weighted tree automata are naturally parametrised by tensors. In this case, low-
rank approximations are required to limit the complexity of such models in practical
applications [136, 40]. In particular, in [40], tensor decompositions have been used for
this purpose.

Before continuing with the rest of our thesis, it is worth highlighting other two
interesting application of tensors in ML. Even if they are not directly connected with
our work, they underline the power of the tensor theory and the benefits that ML
community can obtain from it. The former application is to use tensors and their
decomposition as a tool in probabilistic models to estimate latent model parameters
which exploit a certain tensor structure in their low-order observable moments [3].
The latter one, is to use tensors to study theoretical properties of deep learning models
such as convolutional neural network [39, 38, 174] and recurrent neural network [92,
91]. In this perspective, the whole learning problem can be depicted as the estimation
of a tensor claiming that the implicit regularisation of current learning algorithms
leads to low-rank solutions rather than minimum norm solutions [4, 139].

40 Chapter 2. Background and Related Works

2.5 Model Taxonomy

In the following chapters, we introduce several models for structured data. Thus, to
facilitate the reading, it is worth introducing the model taxonomy followed in the rest
of the thesis.

All the model names are in the form:

X − Y − Z,

where X, Y and Z are strings.
The string Z indicates the model class, i.e. if it is a probabilistic, neural or

LSTM-based model.
The string Y indicates the parametrisation used to define the aggregation function.

For example, it specifies the tensor decomposition leveraged by the model.
The string X provides additional information on the model. For example, it

specifies if the model can handle unbounded data.
In Table 2.1, we report all the model names used in the rest of the thesis according

to the introduced taxonomy.

2.5. Model Taxonomy 41

M
od

el
Pa

ra
m
et
ris

at
io
n

E
xi
st
in
g
in

Li
te
ra
tu
re

Te
ns
or

B
as
ed

Fu
ll

Te
ns
or

Te
ns
or

D
ec
om

po
si
tio

ns

M
od

el
D
at
a

C
la
ss

C
an

on
ic
al

H
ig
he

r-
O
rd
er

Si
ng

ul
ar

Va
lu
e

Te
ns
or
-T
ra
in

RecursiveModels

Bounded

Bounded

P
ro
ba

bi
lis
tic

SP
-H

RT
M
*

Fu
ll-
H
RT

M
C
P
-H

RT
M

H
O
SV

D
-H

RT
M

T
T
-H

RT
M

O
ne

la
ye
r
N
N

Su
m
-R

ec
N
T
N
*

Fu
ll-
R
ec
N
T
N

C
P
-R

ec
N
T
N

H
O
SV

D
-R

ec
N
T
N

T
T
-R

ec
N
T
N

LS
T
M
-b
as
ed

Su
m
-L
ST

M
*

Fu
ll-
LS

T
M

C
P
-L
ST

M
H
O
SV

D
-L
ST

M
T
T
-L
ST

M

Unbounded

P
ro
ba

bi
lis
tic

In
fin

ite
-S
P
-H

RT
M

-
In
fin

ite
-C

P
-H

RT
M

-
In
fin

ite
-T

T
-H

RT
M

O
ne

-L
ay
er

N
N

-
-

In
fin

ite
-C

P
-R

ec
N
T
N

-
In
fin

ite
-T

T
-R

ec
N
T
N

LS
T
M
-b
as
ed

In
fin

ite
-S
um

-L
ST

M
*

-
In
fin

ite
-C

P
-L
ST

M
-

In
fin

ite
-T

T
-L
ST

M

Unbounded

Bounded

P
ro
ba

bi
lis
tic

-
-

-
B
ay
es
ia
n-
H
O
SV

D
-H

RT
M

-

MixtureModels

Bounded

Bounded

P
ro
ba

bi
lis
tic

M
ix
-S
P
-H

RT
M

-
-

-

Unbounded

Bounded

P
ro
ba

bi
lis
tic

B
N
P
-S
P
-H

RT
M

-
-

-

Table 2.1: Taxonomy of all the models introduced in this thesis.
Models with * are already known in literature and are not this thesis

contribution.

43

Chapter 3

A Tensor Framework for
Recursive Models

3.1 Introduction

This chapter aims to build a connection between recursive models for structured data
and tensors. In probabilistic models, such a connection arises naturally if the state-
transition distribution considers all the possible joint configurations of input labels and
child hidden states [58]. On the other hand, in the context of neural models, a tensor
parametrisation of the state-transition function arises if we consider higher-order
interactions among input labels and structural context [58, 104]. In both cases, the
order of the tensor parameters grows linearly with respect to the maximum out-degree
L of the structures taken into account. Thus, there is an exponential relation between
the number of model parameters and L. Interestingly, this connection relates the
complexity of recursive models (intended as the number of parameters) with the input
structures complexity (intended as the maximum out-degree).

While a tensor parametrisation is feasible in practice only for small values of
L, we propose to leverage it to build a framework for recursive models. In this
framework, different recursive models can be defined by specifying different constraints
on the tensor parameter. From this perspective, the constraints imposed allows
approximating the full-tensor state-transition function and reducing the number of
parameters required by the model. The price to pay for such an approximation is the
introduction of a specific inductive bias into the recursive model. Consequently, the
models with a full-tensor parametrisation have a low inductive bias since they do not
add any constraint to the state-transition function.

Interestingly, the framework does not depend on the nature of the models and
therefore can be applied in both the probabilistic and neural context. In this respect,
we show how a probabilistic and a neural approximation commonly used in the
literature can be cast in the proposed framework. The probabilistic approximation
relies on the Switching Parent technique [147] to approximate the tensor state-transition
distribution [12, 11]. The neural approximation consists in considering only first-order
interactions among input labels and structural context. In both cases, we focus on
the inductive bias introduced by the approximation.

44 Chapter 3. A Tensor Framework for Recursive Models

In Section 3.2, we introduce a probabilistic and a neural model whose state-
transition functions are parametrised by a tensor. These models will be used as a
mould for recursive models which approximate the state-transition function. We also
show that the tensor parametrisation proposed implies a low inductive bias. In Section
3.3, we show how two well-known literature models can be framed in our framework,
highlighting the inductive bias they introduce by approximating the tensor parameter.
Finally, in Section 3.4, we draw our conclusion.

3.2 General Tensor Framework

In this section, we lay the foundation of our framework presenting a probabilistic and
a neural model whose state-transition functions are parametrised by a tensor. For
both models, we discuss their inductive bias and how their parameters can be learned
from data. For the sake of simplicity, we do not specialise the output functions since
they are not related to the tensor parametrisation of the models.

3.2.1 Hidden Recursive Tensor Models

The Hidden Recursive Tensor Model (HRTM) is a recursive model for learning
structured transductions which is equivalent to HRM introduced in Section 2.3.3.
Nevertheless, we add the term tensor to highlight that it defines a state-transition
function parametrised by a tensor. As in HRM, the input and output labels as well as
the hidden states are modelled as realisations of random variables. In particular, the
hidden states are modelled as realisations of discrete random variables with C states.

Tensor State-Transition Distribution

The state-transition distribution models the information flow from the child hidden
variables to the parent hidden variable. Let v be a node of the input structure
X . If we assume that the input labels are categorical with M values, the state-
transition distribution P (hv | xv, hv1, . . . , hvL) is a categorical distribution. Recalling
the parametrisation of categorical conditional distributions introduced in Section 2.2.1,
the state-transition distribution is parametrised as:

P (Hv = k | Xv = i,Hv1 = j1, . . . ,HvL = jL,P) = P [i, j1, . . . , jL, k], (3.1)

where P is a (L+ 2)-tensor of size (M + 1)× (C+ 1)L×C. We add the special state ⊥
to indicate the absence of the input label or a child node. The entry P [i, j1, . . . , jL, k]
indicates the probability to observe the hidden variable Hv in the state k, given that
Xv is in the state i and each child hidden variable Hvl is in state jl. Since P represents
a probability distribution, it must satisfy the probability constraints (see Section
2.2.1).

In this formulation, we assume that the input labels are categorical. However, this
is not always the case. If the input labels are numerical (e.g. real vectors), we cannot

3.2. General Tensor Framework 45

Hv

Hv1 . . . HvL

Xv

Figure 3.1: BN depicting the HRTM state-transition distribution.

enumerate all the possible joint configurations of the input label and the child hidden
states. Nevertheless, the state-transition function can be rewritten as:

P (hv |xv, hv1, . . . , hvL)

= P (xv | hv, hv1, . . . , hvL)P (hv | hv1, . . . , hvL)

= P (xv | hv)P (hv | hv1, . . . , hvL),

(3.2)

where the last equality holds assuming that the input label and the child hidden states
are independent given the parent hidden state hv. The distribution P (hv | hv1, . . . , hvL)
is still parametrised by a (L+1)-way tensor (since all hidden variables are categorical);
thus, also in this case, we obtain a number of parameters which grows exponentially
wit respect to L. The distribution P (xv | hv) is defined as a continuous distribution
where the value hv indicates a different parametrisation of the distribution itself, e.g.
xv ∼ N (µhv , σhv).

Inductive Bias

The inductive bias introduced by HRTM is strictly related to the independence
assumptions imposed by the model. Since the HRTM encoding network can be
graphically represented as a BN, we can state the independence assumptions induced
by HRTM directly from the BN.

In Figure 3.1, we depict the BN associated to the HRTM state-transition dis-
tribution. The parent hidden variable Hv is a collider in every path among child
hidden variables Hv1, . . . ,HvL and the input variable Xv. Hence, by definition of
d-separation (see Definition 2.3), we can state that the variables {Xv, Hv1, . . . ,HvL}
are pairwise independent. This independence assumption ensures us that the hidden
state of a node is independent of its siblings (given that their parent hidden state
is not observed). Thus, the hidden state of a node depends only on its descendants,
reflecting the causality of the transduction process (see Section 2.3.1).

Moreover, the parent variableHv is independent of its descendants variables (except
its child variables) given its child variables, i.e. Hv ⊥⊥ Hv \ {Hv, Hv1, . . . ,HvL} |
Hv1, . . . ,HvL. This independence assumption is intrinsic in the recursive nature of
the transduction: it ensures us that, if the child hidden states are known, we have all
the information necessary to determine the parent hidden state.

Thus, we can state that HRTM has a low inductive bias since it contains only
the independence assumptions derived from modelling the learning task as a causal

46 Chapter 3. A Tensor Framework for Recursive Models

x1

x2 x3

x4 x5

(a) An isomorphic transduction Y = τ(X)

H1

H2 H3

H4 H5

X1

X2 X3

X4 X5

Y1

Y2 Y3

Y4 Y5

(b) Bayesian network induced by HRTM. Shaded nodes indicate visible variables.

Figure 3.2: BN induced by HRTM on pair of observed trees (X ,Y).

recursive transduction.
It is worth to point out that in the general case, the structure can induce depen-

dencies also among child nodes. In Figure 3.2a, we show an example of input structure
X ∈ X#2

2 which contains links between child nodes: e.g. x4 and x5 are child nodes
of x3, but x5 is also a child of x4. Note that this is a valid DOAG since there are
no directed cycles in the structure. In Figure 3.2b, we show the encoding network
induced by the HRTM on the structure of X . Clearly, the hidden variable H4 and
H5 are not independent even if they are children of H3 since a directed link connects
them. The same holds between H2 and H3: due to the common child H4, they are not
independent even if their parent H1 is not observed. Nevertheless, the independence
assumptions stated before are still true if we condition over the descendant variables.
For example, given the state of H4 and H5, the variable H2 and H3 are independent
(i.e. H2 ⊥⊥ H3 | {H4, H5}). Thus, also in this case, the hidden state of a node depends
only on its descendants.

Learning

The parameters of HRTM can be learned from the observed data by posterior inference.
Nevertheless, as we have already pointed out in Section 2.3.3, the learning procedure
worsens if the structures are not singly connected. In this section, we present the
learning algorithm which can be applied only when the observed structures are
singly-connected DOAGs.

3.2. General Tensor Framework 47

Let D̂ = {(X 1,Y1), . . . , (XN ,YN)} be a training set with N pairs of singly-
connected DOAGs, the goal of the learning algorithm is to find the model parameters
θ = {P , θg} which maximise the likelihood of the output structures. Since we have not
detailed the output distribution, we use a generic parametrisation θg. The algorithm
is based on a specialisation of the EM algorithm (see Section 2.2.1).

E-step. The aim of the E-step is the computation of the hidden variables posterior
given the visible ones. For the sake of simplicity, we introduce the procedure to
compute the posterior on a generic pair (X ,Y). Clearly, it must be applied to each
training pair (X i,Y i).

The posteriors that should be computed are:

εv1,...,vL,v = P (hv1, . . . , hvL, hv | X ,Y), ∀v ∈ vert(X), (3.3a)

εv = P (hv | X ,Y), ∀v ∈ vert(X). (3.3b)

The computation is efficiently carried out by a tailored version of the upward-
downward algorithm.

Upward pass. The upward pass is a recursive procedure which computes the
following quantities:

βv = P (hv | X v,Yv). (3.4)

The recursion goes form the sinks to the super-source. Hence, the base case of
the recursion is defined on the sinks nodes. Let v be a sink node, the quantity βv is
computed as:

βv[hv] = P (yv | hv, θg)P [xv,⊥, . . . ,⊥, hv]
Z

, (3.5)

where Z = P (yv | xv) is a normalising constant. Note that all the child variables are
in the state ⊥ since v does not have child nodes.

Let v be an internal node, the computation of βv can be obtained recursively as:

βv[hv] =
∑
hv1 · · ·

∑
hvL

P (yv | hv, θg)P [xv, hv1, . . . , hvL, hv]
∏L
l=1 βvl[hvl]

Z
, (3.6)

where Z = P (Yv |X v)∏L

l=1 P (Yvl|X vl)
is a normalising constant.

Multiplying together all the normalisation constants computed on each node, we
obtain the likelihood of the output structure given the input one P (Y | X). This
quantity is exactly the one we would like to increase during the training algorithm.
Hence, it is useful to check its value during the training phase.

Downward pass. The downward pass is a recursive procedure which computes
the posterior for each node. The recursion goes from the super-source node s to the
sink nodes. The super-source is the base case of the recursion since βs = εs.

48 Chapter 3. A Tensor Framework for Recursive Models

The recursive computation of the posteriors can be divided in two steps. In the
first one, we compute the joint posterior εv1,...,vL,v given the parent posterior εv:

εv1,...,vL,v[hv1, . . . , hvl, hv] = εv[hv]P [xv, hv1, . . . , hvL, hv]
∏L
l=1 βvl[hvl]∑

hv1 · · ·
∑
hvL

P [xv, hv1, . . . , hvL, hv]
∏L
l=1 βvl[hvl]

.

(3.7)
Then, we can obtain the posterior of each child hidden variable εv1, . . . , εvL by

marginalisation:

εvl[hvl] =
∑
hv1

· · ·
∑

hv(l−1)

∑
hv(l+1)

· · ·
∑
hvL

εv,v1,...,vL[hv1, . . . , hvL, hv]. (3.8)

This terminates the upward-downward procedure.

M-step. In the M-step, we aim to find the model parameters which increase the
expectation of the complete log-likelihood L(P , θg) of the observed data with respect
to the posteriors computed during the E-step:

L(P , θg) =
N∑
n=1

∑
v∈vert(X n)

E [logP (yv | hv, θg)]εv

+
N∑
n=1

∑
v∈vert(X n)

E [logP (hv | xv, hv1, . . . , hvL,P)]εv,v1,...,vL
.

(3.9)

Thus, the parameter updates are obtained by solving the following optimisation
problems:

P = arg min
P

N∑
n=1

∑
v∈vert(X n)

E [logP (hv | xv, hv1, . . . , hvL,P)]εv,v1,...,vL
, (3.10a)

θg = arg min
θg

N∑
n=1

∑
v∈vert(X n)

E [logP (yv | hv, θg)]εv . (3.10b)

The optimisation problem in Eq. (3.10a) can be solved analytically, obtaining the
following state-transition parameter update:

P [i, j1, . . . , jL, k] ∝
N∑
n=1

∑
v∈vert(X n)

εv1,...,vL,v[j1, . . . , jL, k]× I[xv = i], (3.11)

where the indicator function I[p] is equal to 1 if and only if the predicate p is true.

3.2.2 Recursive Neural Tensor Networks

A Recursive Neural Tensor Network (RecNTN) is a neural recursive model for learning
structured transductions which is based on a tensor parametrisation of the neural
state-transition function. The tensor formulation arises defining a multi-affine map
which considers higher-order interactions among the input label and the structural

3.2. General Tensor Framework 49

T

h̄v1

C + 1

. . . h̄vL

C + 1

C

x̄v

M + 1

Figure 3.3: Tensor network representing the multi-affine map in the
RecNTN state-transition function.

context of a node. In the following, we assume that the input label and the hidden
state associated to each node v are real vectors of size M and C, respectively (i.e.
xv ∈ RM and hv ∈ RC).

Neural Tensor State-Transition Function

The neural state-transition function is a neural layer which computes the hidden state
of a node given its input label and its child hidden states. A neural layer is commonly
defined as the composition of a non-linear activation function with an affine operator
(see Section 2.2.2). Thus, a generic neural state transition function can be defined as:

hv = σ(ψ(xv, hv1, . . . , hvL)), (3.12)

where v is a generic node of the input structure, σ is the non-linear activation function
and ψ is an affine function. Interestingly, the existence of the structural context
(i.e. the hidden state of the child nodes of v) complicates the definition of ψ since it
becomes a multi-variate function. In fact, in the case of flat data, the ψ function is
univariate since it has only the vector xv as argument (see Section 2.2.2). Thus, it
seems natural to define ψ as a multi-variate affine function, or simply multi-affine
function. As in the definition of multi-linear function, a multi-affine function is a
multi-variate function which is affine in each dimension.

The neural tensor state-transition function defines the multi-affine operator by
means of a tensor:

hv = σ
(
T (x̄v, h̄v1, . . . , h̄vL)

)
, (3.13)

where σ is a non-linear activation function, {x̄v, h̄v1, . . . , h̄vL} are homogeneous
coordinates of the input label and the child hidden states (i.e. ā = [a; 1]); T ∈
R(M+1)×(C+1)×···×(C+1)×C is an augmented tensor which represents the multi-affine
map ψ. We use the term augmented tensor by analogy to augmented matrices that
parametrise affine maps. If a child node or an input label is missing, they are commonly
substituted by the zero vector. Thus, the tensor T can be applied also when the
out-degree of the node is less than L. In Figure 3.3, we represent the aggregation
performed by T as a tensor network.

The function induced by T is clearly a multi-affine map. In fact, fixing all the
arguments of T except one we obtain a univariate linear function. Since such a linear

50 Chapter 3. A Tensor Framework for Recursive Models

function is applied on a homogeneous coordinate vector, it represents an affine function
(see Section 2.2.2).

Interestingly, the augmented tensor T aggregates the input label and the child
hidden states considering interactions of any order among them. For the sake of
simplicity, let us consider a node v of a binary tree (i.e. X ∈ X#1

2). By applying the
definition of the function induced by a tensor introduced in Eq. (2.24), we obtain:

T (x̄v, h̄v1, h̄v2) =
M+1∑
i=1

C+1∑
j1=1

C+1∑
j2=1

T [i, j1, j2, :]x̄[i]h̄v1[j1]h̄v2[j2]. (3.14)

Since the input label and the child hidden states are represented in homogeneous
coordinate, their last entry is equal to 1 by definition. Thus, the contribution of such
vectors can be neglected in the multiplications when the last entry is indexed. This
allows rewriting the application of the augmented tensor as:

T (x̄v,h̄v1, h̄v2) =
M+1∑
i=1

C+1∑
j1=1

C+1∑
j2=1

T [i, j1, j2, :]x̄[i]h̄v1[j1]h̄v2[j2]

= T [M + 1, C + 1, C + 1, :] +
M∑
i=1
T [i, C + 1, C + 1, :]x[i]

+
C∑
i=1
T [M + 1, j1, C + 1, :]hv1[j1] +

C∑
i=1
T [M + 1, C + 1, j2, :]hv2[j2]

+
M∑
i=1

C∑
j1=1

T [i, j1, C + 1, :]x[i]hv1[j1] +
M∑
i=1

C∑
j2=1

T [i, C + 1, j2, :]x[i]hv2[j2]

+
C∑

j1=1

C∑
j2=1

T [M + 1, j1, j2, :]hv1[j1]hv2[j2]

+
M∑
i=1

C∑
j1=1

C∑
j2=1

T [i, j1, j2, :]x[i]hv1[j1]hv2[j2],

(3.15)
where each terms in the equation refers to a different sub-tensor of T . By renaming
these sub-tensors, we obtain:

T (x̄v,h̄v1, h̄v2)

= b (bias vector)

+Wxv +U1hv1 +U2hv2 (first-order interactions)

+A(xv,hv1) +B(xv,hv2) +C(hv1,hv2) (second-order interactions)

+D(xv,hv1,hv2), (third-order interactions)
(3.16)

where we clearly report the interaction order modelled by each sub-tensor. The
generalisation to the case of a node with L children is straightforward. Thus, RecNTN
is able to model the interactions of any order among input labels and child hidden
states.

3.2. General Tensor Framework 51

In some cases, it can be useful to avoid representing input labels in homogeneous
coordinates. For example, if the input labels are categorical with M states, we would
like to use them to select a different parametrisation of the state-transition function.
To this end, we can define xv ∈ RM as the one-hot encoding of the observed input
label; removing the homogeneous coordinates representation of xv, the contraction
between T and xv is equivalent to selecting the sub-array T [i, :, . . . , :], where xv[i] = 1.
This sub-array defines the multi-affine operator associated to the label i and it is used
to combine child hidden states.

Inductive Bias

The inductive bias introduced by RecNTN depends on the assumptions made by the
state-transition function to aggregate input labels and contextual information. The
first step is to show that every multi-affine function can be represented by an augmented
tensor. While this property can be directly derived from the universality of the tensor
product [74], we provide an alternative derivation based on the representation of
multi-affine maps as a sum of multi-linear functions [61].

Theorem 1 (Augmented tensors). Let ψ : RI1 × · · · × RID → RK be a multi-affine
function. There exists an augmented tensor T ∈ R(I1+1)×···×(ID+1)×K such that, for
every ad ∈ RId, it holds:

ψ (a1, . . . ,ad) = T (ā1, . . . , ād) ,

where ād = [ad; 1] are the homogeneous coordinate of d-th input vector ad.

Proof sketch (complete proof in Appendix C.1). From Lemma 4.1.3 in [61], it follows
that every multi-affine function ψ is completely determined by the sum of 2D−1 unique
multi-linear functions; each function is applied on a different non-empty subset of
{a1, . . . ,aD} plus a constant:

ψ(a1, . . . ,aD) = ψ(0, . . . ,0) +
∑

S⊆{1,...,d}
S={j1,...,jM},M≥1

fS(aj1 , . . . ,ajM), (3.17)

where 0 is the zero vector. Hence, it is enough to show that (1) all these multi-linear
functions completely determine the entries of T and (2) the application of the multi-
linear function defined by T on homogeneous coordinates of the input vectors induces
the summation of such functions.

Theorem 1 ensure us that any recursive model which use a multi-affine map to
aggregate the input label and the structural context in its state-transition function can
be simulated by a RecNTN with the same hidden state size. It is worth highlighting
that we obtain a tensor parametrisation also if we constrain ψ to be a multi-linear
function, as has been done in seminal papers such as [58, 104]. However, the multi-
linear function is not able to represent the summation (i.e. the function which returns

52 Chapter 3. A Tensor Framework for Recursive Models

the sum of all its argument) since it is a multi-affine map. As it will be clear in Section,
3.3.2, the summation plays a key role in the definition of the first-order RecNTN.

Note that there are also more complex aggregation functions, such as the multi-
variate polynomial functions, that cannot be represented by augmented tensors since
they are not multi-affine maps. Nevertheless, as far as we know, these functions have
been used only in the context of flat data [65, 140, 109, 126].

Thus, constraining ψ to be a multi-affine map seems to be a reasonable choice.
Under this assumption, we can state that RecNTN has a low inductive bias since it
does not impose any further constraint to the state-transition function definition.

Learning

The parameters of RecNTNs are learned by minimising a loss function through gradient
descent. The gradients of the loss functions with respect to the model parameters can
be computed by applying the BPTS algorithm (see Section 2.3.3).

To better characterise the model, it is worth showing the gradients computation.
First, we recall the definition of the function induced by a tensor (see Section 2.4):

hv[k] = T (x̄v, h̄v1, . . . , h̄vL)[k]

=
M+1∑
i

C+1∑
j1

· · ·
C+1∑
jL

T [i, j1, . . . , jL, k]x̄v[i]h̄v1[j1] . . . h̄vL[jL].
(3.18)

Hence, the gradient of the output value T (x̄v, h̄v1, . . . , h̄vL)[k] with respect of the
entry T [i, j1, . . . , jL, k] is given by:

δT (x̄v, h̄v1, . . . , h̄vL)[k]
δT [i, j1, . . . , jL, k] = x̄v[i]h̄v1[j1] . . . h̄vL[jL]. (3.19)

Similarly, the gradient of T (x̄v, h̄v1, . . . , h̄vL)[k] with respect to the argument
hv1[j1] is obtained as:

δT (x̄v, h̄v1, . . . , h̄vL)[k]
δhv1[j1] =

M+1∑
i

C+1∑
j2

· · ·
C+1∑
jL

T [i, j1, . . . , jL, k]x̄v[i]h̄v2[j1] . . . h̄vL[jL],

(3.20)
and it allows back-propagating the error to child hidden states.

Both gradients require the multiplication of L terms; hence, for large values of L,
the computation of such gradients can be numerically unstable.

3.3 Existing Approximation

In this section, we show that a probabilistic and a neural recursive model commonly
used in the literature can be interpreted as approximation of the proposed tensor
models. Both approximations rely on the summation of the input label and the child
nodes contributions. Such a summation introduces a strong inductive bias since they

3.3. Existing Approximation 53

impose independence among the input label and the structural context of a node.
Moreover, these approximations cannot be interpreted as decompositions of the tensor
parameters.

3.3.1 Switching-Parent

The Switching Parent (SP) [147] approximation has been introduced to approximate
the state-transition distribution of high-order Markov chain and factorial hidden
Markov model [147]. Nevertheless, it has been also used to reduce the complexity of
HRTM state-transition distribution [12, 11].

The idea of the SP approximation is to decompose a conditional state-transition
distribution into a mixture of simpler distributions. To this end, it introduces a
mixture variable which allows decoupling the contribution of conditioning variables. In
the following, we show the application of the SP approximation to reduce the number
of parameters required by the HRTM state-transition distribution. We denote this
model as SP-HRTM and it is equivalent to Input-Output SP-BHTMM [11].

Let v be a node of the input structure X ∈ X#P
L , the SP approximation defines a

new discrete random variable Sv which conditioning the hidden variable Hv. Moreover,
the following equality is imposed:

P (hv | xv, hv1, . . . , hvL, Sv = l) = P (hv | Sv = l, xv, hvl). (3.21)

When the mixture variable Sv is observed, it allows to separate the contribution
of the child hidden variables. In particular, if Sv = l, the variable Hv depends only
on the input label xv and the child variable Hvl. Unfortunately, we cannot represent
graphically this relation; hence, the BN is equal to the BN of the full state-transition
distribution (see Figure 3.4).

Finally, we can derive the approximation of the state-transition distribution:

P (hv | xv, hv1, . . . , hvL) =
L∑
l=l

P (hv, Sv = l | xv, hv1, . . . , hvL)

=
∑L
l=l P (hv, Sv = l, xv, hv1, . . . , hvL)

P (xv, hv1, . . . , hvL)

=
L∑
l=l

P (hv | Sv = l, xv, hv1, . . . , hvL)P (Sv = l | xv, hv1, . . . , hvL)

=
L∑
l=l

P (Sv = l | xv)P (hv | Sv = l, xv, hvl),

(3.22)

where we have assumed that the mixture variable Sv depends only on the input label
xv. This allows defining a different approximated state-transition function for each
input label.

The Eq. (3.22) makes clear the connection between the SP approximation and
mixture models. In fact, the hidden state hv can be obtained by a generative process

54 Chapter 3. A Tensor Framework for Recursive Models

Hv

Hv1 . . . HvL

Sv

Xv

Figure 3.4: BN representing the SP-HRTM state-transition distribu-
tion.

which comprises two steps: (1) a state l of the variable Sv is drawn; (2) the hidden
state hv is sampled from the distribution P (hv | Sv = l, xv, hvl) selected accordingly to
the state l of Sv. Hence, the variable Sv is commonly denoted as the mixture variable,
while distributions P (hv | Sv = l, hvl, xv) are referred to as the mixture components.
Each mixture component describes the relation between the hidden variable Hv and
its l-th child hidden variable. Clearly, the state of Sv is not observed. Hence, its
marginalisation mixes the contribution of child hidden variables. Unfortunately, when
the mixture variable is marginalised, no independence assumptions can be established.

The SP approximation is completely determined by the mixture variable distri-
bution and the mixture components distributions. Assuming that the input label
is modelled as a discrete random variable with M states, the mixture variable dis-
tribution is parametrised by the matrix S ∈ R(M+1)×L

≥0 : P (Sv = l | xv,S). On
the other hand, each mixture component is parametrised by a 3-rd order tensor
U l ∈ R(M+1)×(C+1)×C

≥0 : P (hv | Sv = l, hvl, xv,U l). Hence, the SP approximation
requires (M + 1)L+ L(M + 1)(C + 1)C = O(LMC2) parameters.

While the SP approximation has a nice probabilistic interpretation, it does not
correspond to a particular decomposition of the tensor P which parametrises the
HRTM state-transition distribution. In fact, expressing the Equation 3.22 in terms of
parameters, we obtain:

P [xv, hv1, . . . , hvL, hv] =
L∑
l=1
U l[xv, hvl

, hv]S[xv, l]. (3.23)

Equivalently, we can write:

P =
L∑
l=1
U∗l , (3.24)

where U∗l [xv, hv1, . . . , hvL, hv] are tensors with the same order of P which are obtained
by replicating the entries of U l and S opportunely, i.e.:

U∗l [xv, hv1, . . . , hvL, hv] = U l[xv, hvl, hv]S[xv, l], ∀l′ 6= l.∀hvl′ ∈ [1, C]. (3.25)

Hence, the SP approximation impose that the P is obtained as a sum of L tensors
which are obtained applying a proper replication of the entries in U l and S. Clearly,
there are tensors that cannot be represented using such a summation.

3.3. Existing Approximation 55

Moreover, the SP approximation is not able to propagate information from child
to the parent efficiently. Let v be a node with only two child nodes without common
descendants:

P (hv |X v) =
∑
hv1

∑
hv2

P (hv, hv1, hv2 | xv,X v1,X v2)

=
∑
hv1

∑
hv2

P (hv | x1, hv1, hv2)P (hv1 | X v1)P (hv2 | X v2)

=
∑
hv1

∑
hv2

[
L∑
l=1

P (Sv = l | xv)(hv | Sv = l, hvl, xv)
]
P (hv1 | X v1)P (hv2 | X v2)

6=
2∑
l=1

P (S1 = l | xv)P (h1 | x1, h1l)P (h1l | x1l).

(3.26)
The summation over the mixture variable cannot be distributed over the product

of P (h1 | x1, h1l)P (h1l | x1l). Hence, we still need the full state-transition distribution
P (hv | x1, hv1, hv2) to perform the correct information propagation. The full distribu-
tion can be reconstructed using the Eq. (3.23), losing the computational advantage of
the approximation.

The information propagation from child variables to the parent variable is crucial
for the learning procedure. In particular, it is useful for the computation of the β
values in Eq. (3.6). As we show in Appendix D.1, the last equality of Eq. (3.26) is
usually imposed in the learning procedure. This allows to avoid the exponential size
of the state-transition tensor but removes information exchanges between the child
variables. Hence, they become completely independent.

3.3.2 First-Order Approximation

First-order RecNNs are clearly an approximation of RecNTNs. Nevertheless, it is
interesting to show the connection between these two class of models from the point of
view of the tensor T which parametrises the RecNTN neural state-transition layer. In
particular, we show that first-order RecNNs can be obtained imposing a zero-constraint
on the entries of T .

Recalling the definition of the first-order state-transition function:

hv = σ

(
Wxv +

L∑
l=1
U lhvl + b

)
, (3.27)

the hidden state hv is obtained by applying a linear transformation W to the input
label xv and a linear transformation U l to each child hidden state hvl. The results of
such transformations are summed together with a bias vector b, and fed to a non-linear
function σ.

Let ψ+ be the summation of each linear map:

ψ+(x,h1, . . . ,hL) = b+Wxv +U1hv1 + · · ·+ULhvL, (3.28)

56 Chapter 3. A Tensor Framework for Recursive Models

ψ+ is clearly a multi-affine map. Hence, according to the Theorem 1, it exists a tensor
T+ such that:

ψ+(x,hv1, . . . ,hvL) =
M+1∑
i=1

C+1∑
j1=1
· · ·

C+1∑
jL=1

T+[i, j1, . . . , jL, :]x̄[i]h̄v1[j1] . . . h̄vL[jL].

(3.29)
The key observation is that the entry T+[i, j1, . . . , jL, :] is multiplied by the

elements x̄[i], h̄v1[j1], . . . , h̄vL[jL]. However, the function ψ+ have no terms where
vectors are multiplied together. Hence, all those entries of T+ which are multiplied
by more than one vector are set to 0.

Recalling that we are using homogeneous coordinates (hence the last element
of each input vector is equal to 1), the only non-zero entries in T+ are the ones
which have all indexes (except one) pointing to the last entry. For example, the entry
T+(i, C+1, . . . , C+1, :) multiplies solely by x[i], since h̄v1[C+1] = · · · = h̄vL[C+1] = 1.
Therefore, we obtain the following equation:

hv =
M∑
i=1
T+[i, C + 1, . . . , C + 1, :]x[i] +

C∑
j1=1

T+[M + 1, j1, . . . , C + 1, :]hv1[j1]

+ · · ·+
C∑

jL=1
T+[M + 1, C + 1, . . . , jL, :]hvL[jL] + T+[M + 1, C + 1, . . . , C + 1, :],

(3.30)
where each term (except the last one) is the application of a linear map. Finally, by
comparing Eq. (3.29) with Eq. (3.30), we can derive the entries of T+:

T+[i, j1, . . . , jL, :] =

W [i, :] if j1 = · · · = jL = C + 1

U l[jl, :] if i = M + 1 ∧ j6=l = C + 1

b[:] if i = M + 1 ∧ j1 = · · · = jL = C + 1

0 otherwise

. (3.31)

This approximation requires MC + LC2 + C = O(LC2) parameters. The expo-
nential dependence between the number of parameters and the hidden state size is
removed annihilating the higher-order interactions. Nevertheless, in this formulation,
the input label and the child hidden states contribute separately to the computation
of the hidden state hv; therefore, each of them is completely independent of the others.
This induces a strong inductive bias into the model.

In the rest of the work, we refer to this model as Sum-RecNTN to underline the
key role of the summation in the aggregation of structural context.

3.4 Conclusion

In this chapter, we have introduced a tensor framework for learning with structured
data. The proposed framework is based on the definition of a probabilistic and a

3.4. Conclusion 57

neural recursive model whose state-transition function is parametrised by a tensor.
In particular, HRTM defines a categorical state-transition distribution which

is parametrised by a tensor. Such a distribution allows capturing all the possible
interactions among the input label and the structural context of a node. To this
end, we have shown that HRTM has a low inductive bias since it imposes only the
independence assumptions derived from modelling the learning task as recursive
transduction.

RecNTN aggregates the input label and the structural context of a node by means
of a tensor-based multi-affine map. The tensor parametrisation allows considering
higher-order interactions during the aggregation. Then, we have argued that RecNTNs
has a low inductive bias since it is able to simulate any neural recursive model whose
state-transition function is based on a multi-affine map using the same hidden state
size.

Finally, we have introduced two approximations commonly used in literature: the
SP approximation for HRTMs and first-order approximation for RecNTNs. While
they have different interpretations, these two approximations share the following two
characteristics: (1) they impose a complete independence assumption among input
label and child nodes contributions and (2) they cannot be interpreted as a tensor
decomposition of the tensor parameter.

59

Chapter 4

Tensor Decompositions for
Recursive Tensor Models

4.1 Introduction

This chapter puts forward the application of tensor decompositions on full-tensor mod-
els to reduce the number of parameters required by tensor state-transition functions.
To this end, we propose novel recursive models which use tensor decompositions to
represent tensors parameters in a compressed format. Hence, decomposition factors
become the new model parameters which are learned from data. This approach has
been already used in the literature to compress neural layers (e.g. [105, 125, 23, 163]).
Nevertheless, in these works tensor decompositions are used as mere tools to reduce
the number of parameters required by neural layers. A key point of our work is to
show the connection between tensor decompositions and models inductive bias.

We argue that each decomposition introduces a different inductive bias to the
model, which can be exploited during the learning. In the case of probabilistic models,
tensor decompositions are interpreted as BNs. This leads to the introduction of new
variables and new independence assumptions which factorise the full state-transition
distribution. In the case of neural models, tensor decompositions define a specific
procedure to compute the state-transition output. Such a procedure is defined by the
tensor network associated with each tensor decomposition.

Moreover, we show that the expressiveness of these novel models depends on de-
compositions ranks. From this perspective, the decompositions rank can be interpreted
as a model hyper-parameter which regulates the complexity of the state-transition
function. Thus, tensor decompositions allow decoupling model expressiveness from the
dimension of the hidden encoding space. While the dimension of the hidden encoding
space reflects the complexity of the input structures, the value of the rank reflects the
complexity of the state-transition function.

We experimentally assess the effectiveness of the tensor decompositions in recursive
models for structured data on two structural transduction tasks. In particular, we
compare our proposal with approximated models existing in the literature, showing
the advantages of the inductive biases introduced by tensor decompositions. Moreover,

60 Chapter 4. Tensor Decompositions for Recursive Tensor Models

we also analyse the computational complexity required by the models which leverage
tensor decompositions.

In Section 4.2.2, we show the application of the CP decomposition to define a
probabilistic and a neural model which approximate HRTM and RecNTN, respectively.
In Section 4.2.3, we leverage the HOSVD to define a probabilistic and a neural
approximated models. In Section 4.2.4, we apply the TT approximation for the same
purpose. In Section 4.4, we discuss our experimental setting and the results obtained.
Finally, in Section 4.5, we summarise the main results.

4.2 Approximated Recursive Tensor Models

In this section, we show how tensor decompositions can be used to approximate
full-tensor models introduced in Section 3.2.

4.2.1 Tensor Decompositions and Model Approximations

The definition of the tensor-based models HRTM and RecNTN paves the way to the
application of tensor decompositions on their tensor parameters, representing them
in a compressed format. By imposing such a succinct representation, we obtain new
recursive models having decomposition factors as parameters. The decomposition rank
becomes a model hyper-parameter which regulates the trade-off between compression
and model expressiveness.

In probabilistic models, tensor decompositions provide a compressed representation
of the tensor which parametrises the state-transition distribution. Imposing a positivity
constraint on the decomposition factors (i.e. they contain only positive entries),
tensor decompositions can be interpreted as graphical models [142]. Thus, the
compressed format becomes a factorisation of the distribution P (hv | xv, hv1, . . . , hvL).
This observation is the key to depict the inductive bias introduced by each tensor
decomposition.

In neural models, the tensor decompositions compress the augmented tensor
which parametrises the multi-affine map underlying the neural tensor state-transition
function. The compression induces the definition of a new multi-affine map. From this
point of view, tensor decompositions modify the process which aggregates input label
and contextual information to obtain the node hidden state. Thus, they introduce a
specific bias in the recursive model.

In the following sections, we apply these general concepts to define new recursive
models. These models leverage the tensor decompositions introduced in Section 2.4.3
to approximate the state-transition functions. For the sake of conciseness, we report
only the approximated state-transition function. Moreover, in their definition, we
ignore the input label. As we have shown in Section 3.2, the input label can be used to
select a specific parametrisation of the state-transition function. Thus, also in the case
of approximated models, we use the input label to select a different parametrisation
of the tensor approximation.

4.2. Approximated Recursive Tensor Models 61

Also, we do not detail learning algorithms. All probabilistic models can be trained
by minor modifications of the EM algorithm derived for HRTM. We detail these
specialised procedures in Appendix D. Neural models are trained using gradient
descent methods since the tensor decompositions are used to represent multi-affine
(thus differentiable) functions.

4.2.2 Canonical Approximation

Let T be a (L+1)-way tensor which parametrises a state-transition function. Recalling
the definition of the CP decomposition in Eq. (2.32), we can approximate T as:

T [j1, . . . , jL, k] ≈
R∑
r=1

U1[j1, r] . . .UL[jL, r]Q[k, r], (4.1)

where {U1, . . . ,UL} are the factor matrices associated to the first L dimensions, while
the factor matrix Q is associated to the last dimension. All factor matrices have
size (C + 1) × R, where R is the rank of the approximation. Thus, the number of
parameters required by this approximation is O(CLR).

The general idea of the CP approximation is to aggregate the child contributions
with a simple operation like the element-wise multiplication. In principle, this mul-
tiplication does not allow modelling higher-order interactions among children (i.e.
the contribution of each child nodes does not depend on its siblings). Nevertheless,
the CP approximation is able to capture complex interactions because it performs
the aggregation in a new R-dimensional space. Since the size of this new space can
be much larger than the original one, a simple operation is enough to model such
relations. Thus, the value of R (i.e. the decomposition rank) regulates models expres-
siveness. Larger values of R allow defining state-transition functions that capture
complex interactions among child nodes even if they are aggregated by element-wise
multiplication. On the other hand, larger values of R lead to state-transition functions
that require more parameters.

Probabilistic Interpretation (CP-HRTM)

Let P be the tensor which parametrises the HRTM state-transition distribution. If we
assume it is decomposed according to the CP approximation in Eq. (4.1), we obtain
the following factorisation of the state-transition distribution:

P (hv | hv1, . . . , hvL,P) ≈
∑
rv

P (hv | rv,Q)
L∏
l=1

P (rv | hvl,U l), (4.2)

where we make explicit the relation between distributions and factor matrices. Since
factor matrices parametrise categorical distributions, they must contain only non-
negative elements. The value of rv represents the state of a new discrete random
variable Rv which has exactly R states. In Figure 4.1a, we show the BN associated
with Equation (4.2).

62 Chapter 4. Tensor Decompositions for Recursive Tensor Models

The state rv can be interpreted as an encoding of the joint configuration of the
child hidden states (hv1, . . . , hvL). If the number of states R is less than the number
of possible joint configurations, there are configurations mapped to the same state rv.
Joint configurations mapped to the same state rv are indistinguishable for the parent
variable Hv. Suppose the value of R is big enough to build a one-to-one relationship
between rv and all the child joint configurations. In this case, the expressiveness of
this approximation is equivalent to the HRTM. It is enough to set each distribution
P (rv | hvl) equal to 1, if the joint configuration associated with rv contains hvl,
and equal to 0 otherwise. By computing the product

∏L
l=1 P (rv | hvl), we obtain a

distribution a P (rv | hv1, . . . , hvL) which is always zero except in the state rv associated
with the joint configuration (hv1, . . . , hvL). Thus,

∑
rv=1 P (hv | rv)

∏L
l=1 P (rv | hvl)

is equivalent to P (hv | hv1, . . . , hvL). The price to pay for such expressiveness is a
number of parameters which again grows exponentially with respect to L. In fact,
we must set R = CL to build a one-to-one relationship between rv and all the child
joint configurations. This is consistent with the upper bound of the tensor rank (see
Section 2.4.3).

This interpretation of the rank variable gives an intuition of the approximation’s
inductive bias, reflecting the independence assumptions imposed among variables. The
rank variable Rv blocks all paths between child variables Hv1, . . . ,HvL and the parent
variable Hv (see Figure 4.1a); hence, Hv ⊥⊥ {Hv1, . . . ,HvL} | Rv. Moreover, child
variables are independent given Rv. Unfortunately, this conditional independence
cannot be deduced from the BN. Hence, we show that it holds analytically. For the
sake of simplicity, we show it holds only in the case of two child variables:

P (hv1, hv2 | rv) ∝ P (hv1, hv2, rv)

∝ P (rv | hv1)P (rv | hv2)P (hv1)P (hv1)

= P (hv1, rv)P (hv2, rv) ∝ P (hv1 | rv)P (hv2 | rv).

(4.3)

The generalisation to the case of a node with L child nodes is straightforward. This
assumption ensures that the contribution of each child variable to the state of Rv is
independent of the others. Note that this independence assumption also guarantees
that the information propagation from the child variables to the parent variable does
not require the full distribution (as in the case of the SP-HRTM, see Section 3.3.1).
Thus, the propagation can be carried out efficiently.

Neural Interpretation (CP-RecNTN)

Let T be the augmented tensor which parametrises the multi-affine map of Rec-
NTN state-transition function. If we assume it is decomposed according to the CP

4.2. Approximated Recursive Tensor Models 63

Hv

Rv

Hv1 . . . HvL

(a) CP-HRTM state-transition distribution.

Q

U1

h̄v1

C + 1

R

. . .

. . .

UL

h̄vL

C + 1

R

R

C

(b) CP-RecNTN multi-affine map.

Figure 4.1: Graphical representation of the probabilistic and the
neural CP state-transition function.

approximation in Eq. (4.1), we can approximate the multi-affine map as:

T (h̄v1, . . . , h̄vL) =
C+1∑
j1=1
· · ·

C+1∑
jL=1

T [j1, . . . , jL, :]× h̄v1[j1] . . . h̄vL[jL]

≈
C+1∑
j1=1
· · ·

C+1∑
jL=1

R∑
r=1

U1[j1, r] . . .UL[jL, r]Q[:, r]h̄v1[j1] . . . h̄vL[jL]

=
R∑
r=1

C+1∑
j1=1

U1[j1, r]h̄v1[j1]

 . . .
C+1∑
jL=1

UL[jL, r]h̄vL[jL]

Q[r, :]

=

R∑
r=1

(
(UT

1 h̄v1)[r] . . . (UT
Lh̄vL)[r]

)
Q[:, r]

= Q
(
UT

1 h̄v1 � · · · �UT
Lh̄vL

)
.

(4.4)

The computation of the multi-affine map in Eq. (4.4) follows the intuition of the
CP approximation (see the tensor network in Figure 4.1b). At first, factor matrices
{U1, . . . ,UL} are used to map child hidden states in vectors in RR. Then, these new
vectors are aggregated together by the element-wise multiplication. Finally, the result
of the aggregation is mapped back to the hidden state space RC thanks to the factor
matrix Q. The independence relationship among child contributions is given by the
element-wise multiplication.

64 Chapter 4. Tensor Decompositions for Recursive Tensor Models

4.2.3 Higher-Order Singular Value Decomposition Approximation

Let T be a (L+1)-way tensor which parametrises a state-transition function. Recalling
the definition of the HOSVD in Eq. (2.33), we can approximate T as:

T [hv1, . . . , hvL, hv]

≈
R∑

rv=1

R∑
rv1=1

· · ·
R∑

rvL=1
G[rv1, . . . , rvL, rv]U1[hv1, rv1] . . .UL[hvL, rvL]Q[hv, rv], (4.5)

where R is the rank of the approximation along all dimensions of T ,U1, . . . ,UL are
the mode matrices associated to the first L dimensions and Q is the mode matrix along
the last dimension. The tensor G is the core tensor of the approximation. Each factor
matrix requires O(CR) parameters, while the core tensor requires O(RL+1) parameters.
Thus, the total number of parameters required by the HOSVD approximation is
O(LCR+RL+1) = O(RL+1).

The HOSVD approximation explicitly models higher-order interactions among
child hidden states thanks to the core tensor. Nevertheless, these interactions are
computed on a succinct representations of the child hidden states. The value of
R (i.e. the decomposition rank) indicates the size of these succinct representations.
Thus, small values of R lead to the definition of state-transition functions that heavily
compress child information. Nevertheless, the compression reduces the ability to model
complex interactions among constituents.

Probabilistic Interpretation (HOSVD-HRTM)

Let P be the tensor which parametrises the HRTM state-transition distribution. By ap-
plying the HOSVD approximation in Eq. (4.5), we obtain the following approximation
of the state-transition distribution:

P (hv | hv1, . . . , hvL,P)

≈
∑
rv

P (hv | rv,Q)
∑
rv1

· · ·
∑
rvL

P (rv | rv1, . . . , rvL,G)
L∏
l=1

P (rvl | hvl,U l), (4.6)

where we make explicit the relation between distributions and approximation factors.
Since the mode matrices and the core tensor are interpreted as parameters of categorical
distributions, they must contain only non-negative entries.

The values rv, rv1, . . . , rvL represent the realisations of new random variables
Rv, Rv1, . . . , RvL. Each of these new random variables has R states. In Figure 4.2a,
we show the BN associated with Equation (4.6).

The rank variables {Rv1, . . . , RvL} are the core of the probabilistic interpretation
of the HOSVD approximation. In fact, the states of each Rvl can be interpreted as
clusters of the child hidden states [176, 146, 145]. The hidden states in the same
cluster are indistinguishable from the state-transition point of view since the parent
state hv depends only on the cluster (i.e. the state of Rvl). Hence, each cluster rvl

4.2. Approximated Recursive Tensor Models 65

Hv

Rv

Rv1

Hv1

. . .

. . .

RvL

HvL

(a) HOSVD-HRTM state-transition distribu-
tion.

Q

G

U1

h̄v1

C + 1

R

. . .

. . .

UL

h̄vL

C + 1

R

R

C

(b) HOSVD-RecNTN multi-affine map.

Figure 4.2: Graphical representation of the probabilistic and the
neural HOSVD state-transition function.

contains all the states of Hvl that bring the same information to the parent state
transition. This behaviour is consistent with the independence assumptions introduced
by the approximation. Observing the Bayesian network in Figure 4.2a, it is clear that
Hvl and Hv are independent given Rvl, i.e. Hvl ⊥⊥ Hv | Rvl.

If all the states of each random variable Hvl are informative, no clustering can
be performed; thus, the number of clusters (i.e. the number of states of the random
variable Rvl) must be equal to the number of states of Hvl. Hence, no compression is
performed. This is consistent with the upper bound of the n-mode rank (see Section
2.4.3).

Neural Interpretation (HOSVD-RecNTN)

Let T be the augmented tensor which parametrises the multi-affine map of RecNTN
state-transition function. If we assume it is decomposed according to the HOSVD

66 Chapter 4. Tensor Decompositions for Recursive Tensor Models

approximation in Eq. (4.5), we can approximate the multi-affine map as:

T (h̄v1, . . . , h̄vL) =
C+1∑
j1=1
· · ·

C+1∑
jL=1

T [j1, . . . , jL, :]× h̄v1[j1] . . . h̄vL[jL]

≈
C+1∑
j1=1
· · ·

C+1∑
jL=1

R∑
r1=1
· · ·

R∑
rL=1

R∑
r=1

G[r1, . . . , rL, r]U1[j1, r1] . . .UL[jL, rL]

×Q[:, r]h̄v1[j1] . . . h̄vL[jL]

=
R∑

r1=1
· · ·

R∑
rL=1

R∑
r=1

G[r1, . . . , rL, r]

×

C+1∑
j1=1

U1[j1, r1]h̄v1[j1]

 . . .
C+1∑
jL=1

UL[jL, rL]h̄vL[jL]

Q[:, r]

=
R∑

r1=1
· · ·

R∑
rL=1

R∑
r=1

G[r1, . . . , rL, r](UT
1 h̄v1)[r1] . . . (UT

Lh̄vL)[rL]Q[:, r]

=
R∑
r=1

Q[:, r]G
(
UT

1 h̄v1, . . . ,U
T
Lh̄vL

)
[r]

= Q
(
G
(
UT

1 h̄v1, . . . ,U
T
Lh̄vL

))
.

(4.7)

The computation of the multi-affine map in Eq. (4.7) reflects the intuition of the
HOSVD approximation (see Figure 4.2b). At first, factor matrices U1, . . . ,UL are
used to compute a R-dimensional succinct representation of the child hidden states.
Then, these new vectors are combined using the core tensor G. Finally, the result of
the aggregation is mapped back to the hidden state space RC thanks to the factor
matrix Q. Higher-order interactions are captured thanks to the core tensor G.

4.2.4 Tensor Train Approximation

Let T be a (L+1)-way tensor which parametrises a state-transition function. Recalling
the definition of the TT in Eq. (2.34), we can approximate T as:

P [hv1, . . . , hvL, hv]

≈
R∑

rv1=1
· · ·

R∑
rvL=1

G1[hv1, rv1] . . .GL[rvL−1, hvL, rvL]Q[rvL, hv], (4.8)

where R is the approximation rank which we assume equal along all dimensions, and
G1, . . . ,GL,Q are the core tensors. All the core tensors (except the first and the last
one), have size R × (C + 1) × R. Thus, the number of parameters required by the
approximation is O(LCR2).

The idea of the TT approximation is to aggregate child hidden states iteratively,
considering one child at a time. At each step, the child information is combined with
the result of the previous aggregation, obtaining the new intermediate result. All
temporary results are stored in vectors of size R (i.e. the decomposition rank). By

4.2. Approximated Recursive Tensor Models 67

Rv1

Hv1

. . .

. . .

RvL

HvL

Hv

(a) TT-HRTM state-transition distribution.

G1

h̄v1

C + 1

. . . GL

h̄vL

C + 1

R1 RL−1

C

(b) TT-RecNTN multi-affine map.

Figure 4.3: Graphical representation of the probabilistic and the
neural TT state-transition function.

increasing the value of R, we increase the capacity of the approximation to store
intermediate results. Thus, larger values of R lead to more expressive state-transition
functions.

Probabilistic Interpretation (TT-HRTM)

Let P be the tensor which parametrises HRTM state-transition distribution, its TT
approximation following Eq. (4.8) yields:

P (hv | hv1, . . . , hvL,P)

≈
∑
rv1

· · ·
∑
rvL

P (rv1 | hv1,G1) . . . P (rvL | rvL−1, hvL,GL)P (hv | rvLQ), (4.9)

where we make explicit the relation between distributions and core tensors of the
approximation. The values rv, rv1, . . . , rvL−1 represent the states of the new discrete
random variables Rv, Rv1, . . . , RvL. Each of them has R states. In Figure 4.3a, we
show the BN associated with Equation (4.9). The BN depicted is very similar to
the BN of a HMM. Hence, rank variables can be interpreted as the hidden process
which regulates the interaction among hidden child state variables. The Markovian
property is ensured by the conditional independence Rvl+1 ⊥⊥ Rvl−1 | Rvl. In fact,
as in HMMs, this independence assumption ensures us that the state of Rvl encodes
all the useful information of previous elements (i.e. {H1, . . . ,Hl}). Moreover, each
variable Rvl is a collider in all paths between Hl and Hl′ , where l′ < l. Thus, if
we observe the rank variable Rvl, the variable Hl is not independent of all variables
{H1, . . . ,Hvl−1}. Note that if the state RvL (or Hv) is observed, all hidden child state
variables {H1, . . . ,HvL} are dependent.

68 Chapter 4. Tensor Decompositions for Recursive Tensor Models

Neural Interpretation (TT-RecNTN)

Let T be the augmented tensor which parametrises the multi-affine map of RecNTN
state-transition function, its TT approximation is

T (h̄v1, . . . , h̄vL) =
C+1∑
j1=1
· · ·

C+1∑
jL=1

T [j1, . . . , jL, :]× h̄v1[j1] . . . h̄vL[jL]

≈
C+1∑
j1=1
· · ·

C+1∑
jL=1

R∑
r1=1
· · ·

R∑
rL=1

G1[j1, r1] . . .GL[rL−1, jL, rL]×Q[rL, :]

× h̄v1[j1] . . . h̄vL[jL]

=
R∑
r=1

R∑
rL=1

· · ·
R∑

r2=1

 R∑
r1=1

C+1∑
j1=1

G1[j1, r1]h̄v1[j1]

 C+1∑
j2=1

G2[r1, j2, r2]h̄v2[j2]

. . .

C+1∑
jL=1

GL[rL−1, jL, rL]h̄vL[jL]

Q[r, :]

=
R∑
r=1

Q[r, :]GL

(
. . .G2

(
GT

1 h̄v1, h̄v2
)
. . . , h̄vL

)
[r]

= QT
(
GL

(
. . .G2

(
GT

1 h̄v1, h̄v2
)
. . . , h̄vL

))
.

(4.10)

The computation of the multi-affine map in Eq. (4.10) follows the intuition of the
TT approximation (see Figure 4.3b). At the first step, the first hidden state vector
h̄v1 is mapped into a R-dimensional vector thanks to core matrix G1. This vector
represents the first intermediate result. At the second step, such a result is combined
with the second hidden state vector h̄v2 through the multi-linear function G2 which
yields the new R-dimensional intermediate result. Hence, each core tensor can be
interpreted as a linear operator which combines the previous intermediate result with
the current child hidden state, obtaining the new intermediate result. The last core
tensor Q maps the final result to the hidden state space.

4.3 Approximated LSTM-based Recursive Models

In Section 2.3.3, we have introduced Tree-LSTMs. They are a specific architecture
of RecNN that use a LSTM cell to approximate the state-transition function. The
computation of all the LSTM gates values is performed through different neural
networks whose architectures are identical to the first-order RecNN hidden layer.
Hence, we can define tensor LSTM cells by applying tensor-based multi-affine maps

4.3. Approximated LSTM-based Recursive Models 69

to compute the gates values:

iv = σ
(
ψi(xv,hv1, . . . ,hvL)

)
, ov = σ (ψo(xv,hv1, . . . ,hvL)) ,

uv = σ (ψu(xv,hv1, . . . ,hvL)) , fvl = σ
(
ψl(xv,hv1, . . . ,hvL)

)
, ∀l ∈ [1, L],

cv = iv � uv +
L∑
l=1
fvl � cvl, hv = ov � tanh(cv),

(4.11)
where {ψi, ψo, ψu} and {ψ1, . . . , ψL} are multi-affine maps. In the following paragraphs,
we introduce new tensor Tree-LSTMs defining multi-affine maps based on the tensor
framework developed in this thesis. Note that we use the same architecture for all ψ
functions. Hence, in the following paragraphs we define a single function ψt where
t ∈ {i, o, u, 1, . . . , L} is the superscript which specifies the gate. We apply the same
superscript also on the multi-affine parameters, to underline that each multi-affine
map has a different parametrisation.

As in the other approximated models, we assume that input labels are categorical
and their values specify a different parametrisation of the state-transition function.
Hence, each ψt has a different parametrisation for each input label. For the sake of
simplicity, in the following equations we ignore this relation between input label and
parameters.

Full-TensorLSTM. In the Full-LSTM, each multi-affine map ψt is implemented
through an augmented tensor:

ψt(xv,hv1, . . . ,hvL) = T t(x̄v, h̄v1, . . . , h̄vL). (4.12)

Sum-TensorLSTM. The Sum-LSTM is equivalent to Tree-LSTM defined in Section
2.3.3. Each multi-affine map ψt is implemented considering only first-order interaction
among hidden child states:

ψt(xv,hv1, . . . ,hvL) =
L∑
l=1
U t
lhvl + bt. (4.13)

CP-TensorLSTM. In the CP-LSTM, each multi-affine map ψt is obtained by
applying the CP approximation (see Eq. (4.1)) on its augmented tensor:

ψt(xv,hv1, . . . ,hvL) = Qt
(
U t

1
T
h̄v1 � · · · �U t

L
T
h̄vL

)
(4.14)

HOSVD-TensorLSTM. In the HOSVD-LSTM, each multi-affine map ψt is ob-
tained by applying the HOSVD approximation (see Eq. (4.5)) on its augmented
tensor:

ψt(xv,hv1, . . . ,hvL) = Qt
(
Gt
(
U t

1
T
h̄v1, . . . ,U

t
L

T
h̄vL

))
, (4.15)

70 Chapter 4. Tensor Decompositions for Recursive Tensor Models

Recursive Models

Approx. Probabilistic One-layer NN LSTM-based

None Full-HRTM Full-RecNTN Full-LSTM
CP CP-HRTM CP-RecNTN CP-LSTM
HOSVD HOSVD-HRTM HOSVD-RecNTN HOSVD-LSTM
TT TT-HRTM TT-RecNTN TT-LSTM

Existing SP-HRTM [12] Sum-RecNTN [58] Sum-LSTM [159]

Table 4.1: List of all the models assessed.

TT-TensorLSTM. In the TT-LSTM, each multi-affine map ψt is obtained by
applying the TT approximation (see Eq. (4.8)) on its augmented tensor:

ψt(xv,hv1, . . . ,hvL) = QtT
(
Gt
L

(
. . .Gt

2

(
Gt

1
T
h̄v1, h̄v2

)
. . . , h̄vL

))
. (4.16)

4.4 Experimental Analysis

In this section, we experimentally assess the effectiveness of the proposed tensor-
based models. In Table 4.1, we report all models we evaluated in the experimental
assessment. For the sake of clarity, we refer to models which do not approximate the
tensor parameter as full models. To ensure a fair comparison between different models,
we always use a label-dependent parametrisation of the state-transition function.

Model predictive performance is assessed using classification accuracy. In particular,
we use the term root accuracy to indicate the accuracy computed only on root nodes.
This quantity measures the ability of the models to predict the correct class of the
whole input structure (as in super-source transductions)

ACCr = 1
N

N∑
n=1

I[ynr = ŷnr], (4.17)

where N is the number of output structures; ynr and ŷnr are the predicted and the true
output labels attached to the root of the n-th structure, respectively.

On the other hand, we use the term node accuracy to indicate the accuracy
computed on each node of the structure, i.e.:

ACC = 1
N

N∑
n=1

∑
v∈vert(Y) I[ynv = ŷnv]
|vert(Y)| , (4.18)

where N is the number of output structures; ynv and ŷnv are the predicted and the
true output labels attached to the node v of the n-th output structure, respectively.
All the accuracy values reported in the next sections are averaged over three runs to
account for randomisation effects due to model parameters initialisation.

4.4. Experimental Analysis 71

4.4.1 Implementation Details

We have implemented all the models using PyTorch [131] and Deep Graph Library
(DGL) [170]. The code is publicly available.1

Neural models implement the neural state-transition layer and the output layer
as PyTorch modules. The recursive processing of the input structures leverages the
DGL message-passing primitives. All the gradients are computed automatically using
PyTorch differentiation tool.

We also implement probabilistic models using PyTorch and DGL; in particular,
we use PyTorch to perform the numerical computations and DGL to implement the
recursive processing of the input structures. All the probabilistic operations are
performed in log-space to avoid numerical issues. However, when a marginalisation
occurs, it is necessary to remove the logarithm. We implement the so-called log-sum-exp
trick to avoid numerical issues in the marginalisation step:

∑
x

P (x, y) = Z
∑
x

P (x, y)
Z

= logZ + log
∑
x

exp[log(P (x, y))− logZ],

where Z = maxP (x, y) =⇒ logZ = max logP (x, y). This ensures that the exponen-
tial function does not shrink to zero all values in logP (x, y) since log(P (x, y))− logZ
always has an entry which is equal to 0.

4.4.2 Experimental Settings

We test all the models on two transduction tasks on tree-structured data, i.e. the
input structured space is X#1

L . In the following, we outline the experimental setting
used in both tasks by the probabilistic and the neural models. We assume that input
and output labels have M and K different states, respectively.

Probabilistic Models Configurations

Probabilistic models tackle both tasks as structural transductions. Hence, an output
label is generated for every node in the input structure. Thus, all output labels are
visible during the training.

The generation of the output labels is handled through a categorical emission
distribution since the output labels are categorical. The input labels on internal nodes
are used to select a specific parametrisation of the state-transition distribution. On
leaf nodes, the input labels are used to select a specific prior distribution: P (hv | xv).
Note that this prior distribution is equivalent to a full state-transition distribution
where all the child hidden states are ⊥.

Since the input structures are singly connected, probabilistic models are trained
through tailored versions of the EM algorithm detailed in Appendix D. We execute
the EM algorithm for a maximum of 200 iterations. Also, we use an early-stopping

1https://github.com/danielecastellana22/tensor-tree-nn

https://github.com/danielecastellana22/tensor-tree-nn

72 Chapter 4. Tensor Decompositions for Recursive Tensor Models

Hyper-parameters values

BoolSent ListOps

C R C R

SP-HRTM {5, 10, 20, 50} - {20, 50} -
Full-HRTM {2, 3} - {5, 10} -
CP-HRTM {5, 10} {10, 20} {20, 50, 100} {20, 50, 100}
HOSVD-HRTM {5, 10} {2, 3} {50, 100, 150} {2, 3}
TT-HRTM {5, 10} {2, 4} {10, 20, 30} {5, 10}

Sum-RecNTN {10, 20, 50, 100, 300} - {25, 88, 214} -
Full-RecNTN {2, 5, 10} - {3, 5, 7} -
CP-RecNTN {10, 20, 50} {10, 50, 100} {100} {6, 50, 370}
HOSVD-RecNTN {10, 20} {2, 5, 10} {10, 20} {3, 5, 7}
TT-RecNTN {10, 20} {5, 10, 20} {50} {4, 12, 32}

Sum-LSTM {10, 20, 50, 100, 300} - {25, 88, 214} -
Full-LSTM {2, 5, 10} - {3, 5, 7} -
CP-LSTM {10, 20, 50} {10, 50, 100} {100} {6, 50, 370}
HOSVD-LSTM {10, 20} {2, 5, 10} {10, 20} {3, 5, 7}
TT-LSTM {10, 20} {5, 10, 20} {50} {4, 12, 32}

Table 4.2: Hyper-parameters values validated on the BoolSent and
the ListOps task.

criteria on the validation root accuracy to stop the training if the root accuracy does
not increase for 50 consecutive iterations.

For each model, we perform a model selection on the validation set to find the
best hyper-parameters configuration. We validate only two hyper-parameters: the
hidden-state size C and the rank R (if it is used). We choose to validate only these two
hyper-parameters because they are strictly related to the model expressiveness and
the number of parameters it requires. In Table 4.2, we report the hyper-parameters
values validated in all the tasks.

Neural Models Configurations

Neural models (i.e. RecNTNs and LSTM-based models) tackle both tasks as structure
classification problems. Hence, they implement a super-source transduction applying
the output layer only on the root nodes. Thus, only root labels are visible during the
training.

The output layer is implemented as a softmax layer, i.e. yv = σ(W yhv +by) where
σ is the softmax activation function.

The input labels on the internal nodes are used to select a specific parametrisation
of the state-transition neural layer. On leaf nodes, the state-transition function is
not applied. Hence, we define a new layer to infer the hidden state of the leaf nodes
starting from their input labels. The layer is defined as hv = σ(W xxv + bx), where
v is a leaf node, σ is the sigmoid activation function and xv ∈ RM is the one-hot
encoding of the input label. Note that this layer is equivalent to a full tensor neural
layer where all child hidden states are zero vectors.

4.4. Experimental Analysis 73

All the neural models are trained by minimising the negative log-likelihood of the
observed labels. The parameters are updated using the AdaDelta algorithm [179].
Thus, no learning rate is set. The batch size is set to 50 for all the models. The
training is performed for at most 100 epochs. Also, we use early-stopping if the root
validation accuracy does not increase for 5 consecutive iterations.

For each model, we perform a model selection on the validation set to find the
best hyper-parameters configuration. Again, we validate only two hyper-parameters:
the hidden-state size C and the rank R (when used). In Table 4.2, we report the
hyper-parameters values validated in all the tasks.

4.4.3 Boolean Sentences Task

We build the BoolSent task on purpose to assess performances of tensor-based models.
The goal of BoolSent task is to predict the output of a sequence of operations on
boolean values. Each sequence is represented with its parse tree generated according
to the grammar:

S :=OR(S, . . . , S) | AND(S, . . . , S) | XOR(S, . . . , S)

| IMPLY(S, . . . , S) | {0, 1},
(4.19)

where {0, 1} are the truth values which appear only on leaf nodes, and OR, AND,
XOR, IMPLY are the logical operators which appear only on internal nodes. The
result of the logical operators is obtained by folding the input list with the logical
operator from left to right (i.e. the fold left reduction is applied). For example, the
expression OR(0, 0, 1) is evaluated applying the OR operator on the first two input
elements; the result obtained (i.e. 0 since 0 ∨ 0 = 0) is used to compute the final
results: 0∨ 1 = 1. In the following, we briefly describe the properties of each operator.

OR: its output is 1 if and only if there is at least one true value among inputs.

AND: its output is 1 if and only if all the input values are true.

XOR: its output is 1 if and only if the number of true values in its input list is odd.

IMPLY: its output depends on the order of the input values; hence, cannot be
deduced by counting the number of 0 and 1 in the input list.

In Figure 4.4, we report an example of input-output tree pair of the BoolSent task.
Clearly, all the input labels are categorical. There are 4 possible labels on internal
nodes and 2 possible labels on leaf nodes. The output labels are also categorical since
there are only two possible outcomes: 0 and 1.

The tree maximum out-degree L denotes the number of inputs for each operator:
we build four different dataset setting L ∈ {2, 3, 4, 5}. Each dataset contains 10k trees:
7000 in the training set, 1000 in the validation set and 2000 in the test set. The depth
of each tree is between 4 and 8. The BoolSent datasets is publicly available.2

2https://github.com/danielecastellana22/tensor-tree-nn/tree/main/data/BoolSent/raw

74 Chapter 4. Tensor Decompositions for Recursive Tensor Models

OR

IMPLY

0 1 0

0 AND

XOR

0 1

0

(a) Input tree X .

0

0

0 1 0

0 0

1

0 1

0

(b) Output tree Y.

Figure 4.4: Example of a BoolSent input-output tree pair.

ACCr%

L=2 L=3 L=4 L=5

SP-HRTM 73.8 (0.7) 69.8 (0.2) 69.0 (0.0) 70.4 (0.9)
Full-HRTM 100.0 (0.0) 100.0 (0.0) 100.0 (0.0) 100.0 (0.0)
CP-HRTM 60.6 (0.0) 63.9 (0.1) 66.9 (0.0) 69.1 (0.0)
HOSVD-HRTM 100.0 (0.0) 100.0 (0.0) 100.0 (0.0) 100.0 (0.0)
TT-HRTM 100.0 (0.0) 100.0 (0.0) 100.0 (0.0) 100.0 (0.0)

Sum-RecNTN 99.9 (0.0) 95.3 (2.9) 71.5 (0.7) 73.2 (0.9)
Full-RecNTN 86.3 (0.2) 78.4 (0.9) 71.6 (1.2) 72.3 (0.7)
CP-RecNTN 100.0 (0.0) 100.0 (0.0) 99.9 (0.1) 99.9 (0.1)
HOSVD-RecNTN 100.0 (0.0) 100.0 (0.0) 99.9 (0.1) 99.8 (0.2)
TT-RecNTN 100.0 (0.0) 100.0 (0.0) 99.9 (0.1) 100.0 (0.0)

Sum-LSTM 100.0 (0.0) 99.5 (0.1) 81.2 (2.0) 74.0 (0.3)
Full-LSTM 99.6 (0.2) 96.3 (0.2) 76.0 (0.8) 75.1 (1.0)
CP-LSTM 99.9 (0.1) 99.9 (0.0) 99.7 (0.2) 99.5 (0.3)
HOSVD-LSTM 99.9 (0.1) 99.9 (0.0) 99.9 (0.0) 99.9 (0.1)
TT-LSTM 99.9 (0.1) 100.0 (0.0) 99.8 (0.0) 99.8 (0.1)

Table 4.3: Test root accuracy obtained by all the evaluated models
on the BoolSent datasets with different maximum out-degree L. Values
reported are averaged over three runs (standard deviation in brackets).

Results

In Table 4.3, we report the test root accuracy obtained by all the models on the
BoolSent dataset by varying the maximum tree out-degree L. The same results are
depicted in Figure 4.5. The advantage of using tensor decompositions is evident: the
models which leverage tensor decompositions to define their state-transition functions
reach an accuracy of 100% regardless of the value of L. On the other hand, the
sum-based and the full-tensor models struggle, especially when L > 3. Interestingly,
this behaviour is shared between probabilistic and neural models, emphasising that
the state-transition function inductive bias is a key design factor for recursive models.

The only exceptions to this trend are CP-HRTM and Full-HRTM (see Figure
4.5a). The former one is not able to achieve high accuracy for any value of L, even if
its state-transition distribution is based on the canonical approximation. The latter
always reaches an accuracy of 100%, even if it is a full-tensor model.

The advantages of using complex neural architecture as the LSTM cell are negligible

4.4. Experimental Analysis 75

2 3 4 5
L

60

70

80

90

100
Ro

ot
 A

cc
ur

ac
y

SP-HRTM
Full-HRTM
CP-HRTM

HOSVD-HRTM
TT-HRTM

(a) HRTMs results.

2 3 4 5
L

70

75

80

85

90

95

100

Ro
ot

 A
cc

ur
ac

y

Sum-RecNTN
Full-RecNTN
CP-RecNTN

HOSVD-RecNTN
TT-RecNTN

(b) RecNTNs results.

2 3 4 5
L

75

80

85

90

95

100

Ro
ot

 A
cc

ur
ac

y

Sum-LSTM
Full-LSTM
CP-LSTM

HOSVD-LSTM
TT-LSTM

(c) LSTM-based models results.

Figure 4.5: Test root accuracy on the BoolSent task in relation to
the input structure maximum out-degree L.

(see Figure 4.5b and Figure 4.5c). The sum-based and the full-tensor neural models
achieve higher accuracies using a LSTM cell rather than a single neural layer as a
state-transition function. Nevertheless, when the value of L increases, they still fail to
reach the performances of approximated models.

In Figure 4.6, we report the validation accuracy achieved by all the model configu-
rations evaluated on the BoolSent task with L = 5. The models which leverage tensor
decompositions achieve 100% accuracy using far fewer parameters than the sum-based
and the full-tensor approaches. This behaviour emphasises again the advantages of
the models with the right inductive bias for the task considered. We discuss in deep
this aspect in Section 4.4.5.

There is only one configuration of CP-LSTM which does not achieve an accuracy of
100%. Further investigation has shown that the learning process of such configuration
stopped after few iterations due to the early-stopping criteria. Thus, in some cases,
the early-stopping criteria selected can be too strict.

76 Chapter 4. Tensor Decompositions for Recursive Tensor Models

103 104 105

Num. of params

60

70

80

90

100

Ro
ot

 A
cc

ur
ac

y

SP-HRTM
Full-HRTM
CP-HRTM

HOSVD-HRTM
TT-HRTM

(a) HRTMs results.

104 105 106 107

Num. of params

60

70

80

90

100

Ro
ot

 A
cc

ur
ac

y

Sum-RecNTN
Full-RecNTN
CP-RecNTN

HOSVD-RecNTN
TT-RecNTN

(b) RecNTNs results.

105 106 107

Num. of params

75

80

85

90

95

100

Ro
ot

 A
cc

ur
ac

y

Sum-LSTM
Full-LSTM
CP-LSTM

HOSVD-LSTM
TT-LSTM

(c) LSTM-based models results.

Figure 4.6: Validation root accuracy for all the configurations tested
on the BoolSent task with L = 5. For each configuration, we report the
validation accuracy reached in relation to the number of parameters

required.

4.4.4 List Operations Task

The goal of the ListOps task [123] is to predict the solution of a sequence of summary
operations on lists of single-digit integers, written in prefix notation. Each element in
the dataset consists of a sequence of operations and its solution. See [123] for more
details on the dataset generation. For our purposes, we represent each sequence as a
tree using its syntax tree built according to the following grammar:

S := MAX(S, . . . , S) | MIN(S, . . . , S) | SM(S, . . . , S) | MED(S, . . . , S) | {0, . . . , 9},
(4.20)

where {0, . . . , 9} are the digits that appear only on the leaf nodes; MAX, MIN, SM
and MED are the logical operators which appear only on the internal nodes. In the
following, we briefly describe the semantic of each operator.

MAX: its output is the maximum value among its input values.

MIN: its output is the minimum value among its input values.

4.4. Experimental Analysis 77

MIN

2 MED

1 MAX

4 5 6

4 5 SM

8 9

(a) Input tree X .

2

2 4

1 6

4 5 6

4 5 7

8 9

(b) Output tree Y.

Figure 4.7: Example of a ListOps input-output tree pair.

SM: its output is the summation of its input values modulo 10.

MED: its output is the median of its input values.

The dataset is already divided into training and test splits containing respectively
90% and 10% of the data [123]. We further sample 11% of the training set in order to
build a validation set. Hence, we obtain a training set which contains 80k trees; both
validation and test set contain 10k trees. The tree maximum out-degree is equal to
five, i.e. L = 5.

In Figure 4.7, we report an example of input-output tree pair of the ListOps task.
Clearly, all the input labels are categorical. There are 4 possible labels on the internal
nodes and 10 possible labels on the leaf nodes. The output labels are also categorical
since there are ten possible outcomes: the digits from 0 to 9. Note that in the original
dataset in [123], the output label is attached only on the root nodes. We have extended
it considering also intermediate results.

Following the experimental setting used in [123], we use a 2-layer neural network
as output function of the neural recursive models. The first layer is a hidden layer
with 20 hidden units, while the second layer is a softmax layer.

Results

In Table 4.4, we report the test root accuracy obtained by all the models on the
ListOps task. In this task, the difference between the probabilistic and the neural
models is evident. This is mainly motivated by the increased complexity of the task;
in fact, in ListOps all the labels and the intermediate results are digits. Hence, there
are 105 possible input configurations to consider for each operator.

In probabilistic models, TT-HRTM outperforms all the other models reaching an
accuracy of 75%. Nevertheless, we were not able to terminate the model selection
process on Full-HRTM due to the computational time required by the training.

In neural models, the use of tensor decompositions always leads to accuracies
higher than 90%. On the other hand, the sum-based and the full-tensor neural models
struggle to reach an accuracy of 80%. We argue that, also on this task, the inductive

78 Chapter 4. Tensor Decompositions for Recursive Tensor Models

ACCr%

SP-HRTM 27.2 (2.5)
Full-HRTM Out Of Resources
CP-HRTM 22.7 (0.1)
HOSVD-HRTM 33.9 (0.8)
TT-HRTM 75.6 (2.7)

Sum-RecNTN 76.4 (0.1)
Full-RecNTN 60.1 (1.0)
CP-RecNTN 94.3 (0.8)
HOSVD-RecNTN 96.2 (0.1)
TT-RecNTN 93.0 (0.4)

Sum-LSTM 79.9 (1.0)
Full-LSTM 75.5 (1.2)
CP-LSTM 94.2 (0.2)
HOSVD-LSTM 97.8 (0.6)
TT-LSTM 97.2 (0.2)

Table 4.4: Test root accuracy obtained by all the evaluated models
on the ListOps task. All values are averaged over three runs (standard

deviation in brackets).

bias introduced by the sum-based models does not match the task nature. We deepen
this aspect in Section 4.4.5.

All the neural models benefit from a LSTM-based state-transition function. This
is particularly evident when comparing the results obtained by Full-RecNTN and
Full-LSTM.

In Figure 4.8, we report the validation accuracy achieved in all configurations.
Neural models (see Figure 4.8b and Figure 4.8c) follow the same trend highlighted in
the BoolSent task. The models which leverage tensor decompositions achieve higher
accuracy using fewer parameters than the sum-based and the full-tensor approaches.
This trend is less evident in the probabilistic models (see Figure 4.8a). Nevertheless,
TT-HRTM outperforms other approaches using fewer parameters.

Note that we cannot compare our results with the one reported in [123] due to the
different parsing of input expressions.

4.4.5 The Importance of the Inductive Bias

The results obtained on the BoolSent and the ListOps tasks show clearly the advantage
of tensor decompositions when the maximum out-degree of the input structures
increases. This advantage is independent of the class of the recursive model used to
the tackle transduction task since both probabilistic and neural models show the same
behaviour. Hence, we argue that the models which leverage tensor decompositions
are able to outperform other models thanks to (1) the inductive bias introduced by
the tensor decompositions and (2) the decoupling of models expressiveness from the
hidden state size. To support our intuition, we study the ability of each model to
learn the operators introduced in both tasks.

In Figure 4.9a, we show the test accuracy for each logical operator obtained by
all the probabilistic models on the BoolSent dataset with L = 5. We also report the

4.4. Experimental Analysis 79

104 105

Num. of params
20

40

60

80

100

Ro
ot

 A
cc

ur
ac

y

SP-HRTM
CP-HRTM

HOSVD-HRTM
TT-HRTM

(a) HRTMs results.

103 104 105 106

Num. of params

60

70

80

90

100

Ro
ot

 A
cc

ur
ac

y

Sum-RecNTN
Full-RecNTN
CP-RecNTN

HOSVD-RecNTN
TT-RecNTN

(b) RecNTNs results.

105 106 107

Num. of params

75

80

85

90

95

100

Ro
ot

 A
cc

ur
ac

y

Sum-LSTM
Full-LSTM
CP-LSTM

HOSVD-LSTM
TT-LSTM

(c) LSTM-based models results.

Figure 4.8: Validation root accuracy of all the configurations tested
on the ListOps task. For each configuration, we report the validation
accuracy reached in relation to the number of parameters required.

80 Chapter 4. Tensor Decompositions for Recursive Tensor Models

accuracy obtained by a dummy model which simply outputs the most frequent class
for each operator3. By observing the plot, it is clear that SP-HRTM and CP-HRTM
have the same performances as the dummy model; thus, they are not able to learn
the input-output relation induced by each operator. SP-HRTM and CP-HRTM are
the only models who impose an independence assumption among child nodes. Clearly,
this assumption does not match the task characteristics.

AND OR XOR IMPLY0

20

40

60

80

100

No
de

 A
cc

ur
ac

y

SP-HRTM
Full-HRTM
CP-HRTM

HOSVD-HRTM
TT-HRTM
Most Freq.

(a) HRTMs results.

AND OR XOR IMPLY0

20

40

60

80

100

No
de

 A
cc

ur
ac

y

Sum-RecNTN
Full-RecNTN
CP-RecNTN

HOSVD-RecNTN
TT-RecNTN
Most Freq.

(b) RecNTNs results.

AND OR XOR IMPLY0

20

40

60

80

100

No
de

 A
cc

ur
ac

y

Sum-LSTM
Full-LSTM
CP-LSTM

HOSVD-LSTM
TT-LSTM
Most Freq.

(c) LSTM-based models results.

Figure 4.9: Test node accuracy for each operator in the BoolSent
task with L = 5.

In Figure 4.9b and Figure 4.9c, we report the test accuracy for each logical operator
obtained by the neural models on the same dataset. Again, Sum-RecNTN and Sum-
LSTM achieve performances that are comparable with the dummy model. In theory,
with a sufficiently large hidden state size, such models should be able to implement a
solution of the task. Nevertheless, in practice, the learning algorithm is not able to
find such a solution even with a hidden state size of 300. Note that the state-transition
functions of these two models can only capture first-order interactions among children;
hence, the contribution of each child node is independent of the others. We argue
that this assumption does not match the characteristics of the task; thus, the learning
algorithm fails to find the correct solution.

3Note that the solution implemented by the dummy model maximises the likelihood of output
labels given the input one, i.e. P (yv | xv). The structural information are ignored.

4.4. Experimental Analysis 81

The full-tensor models (e.g. Full-RecNTN and Full-LSTM) are not able to reach an
accuracy of 100% on any logical operators. In this case, we believe that the full-tensor
models cannot solve the task due to the small hidden state size. In fact, in both
models we validate only hidden state spaces of size 2,5 and 10 (see Table 4.2) to limit
the number of model parameters which is O(CL). In theory, full tensor models can
solve this task using a small hidden state since it is enough to encode the intermediate
results (0 or 1) on internal nodes. However, in practice, neural models fail to find such
a solution. We argue that this failure is due to the lack of the immediate feedback on
internal nodes. In fact, neural models observe only the output labels on root nodes
(see Section 4.4.2). Hence, we believe that, in this setting, the learning algorithm is
not able to infer that hidden states should represent the intermediate results rather
than an encodings of the structure. This hypothesis is supported by the results of
HOSVD-RecNTN and HOSVD-LSTM; both models are able to reach an accuracy of
100% even when the decomposition rank is equal to 2. Thanks to the mapping induced
by the mode matrices, the models are able to extract from the hidden child states all
the necessary information to implement the logical operators (i.e. the intermediate
results).

All the other neural and probabilistic models which leverage tensor decompositions
achieve an accuracy of 100% on logical operators. The only exceptions is CP-HRTM,
which obtains same performances as the dummy model due to the independence
assumption imposed among child variables. The CP decomposition is the only
decomposition which behaves differently when it is applied on neural or probabilistic
models. We argue that this difference is due to the element-wise multiplication which
is the basis of the decomposition. In probabilistic models, the probability constraints
imposed on the factor matrices ensure us that all the elements multiplied are positive.
Hence, we lose the negation property of the multiplication (i.e. −1 · −1 = 1). Indeed,
such a property can play a key role to implement the XOR operator. In fact, let us
consider a mapping which transforms 0 and 1 values to positive and negative real
numbers, respectively. Then, the output of the XOR operator applied on a list of
boolean values can be obtained (1) by mapping all boolean values into real numbers
according to the map just defined, and (2) by multiplying all the results together. If the
result of the multiplication is negative, we are sure that the input list contains an odd
number of values equal to 1. Such function cannot be easily encoded by CP-HRTM,
resulting in poor performances on this task. On the other, can be straightforwardly
implemented by the neural models based on the CP approximation.

If we turn our attention to the ListOps task, the performances of the probabilistic
models heavily degrade. In Figure 4.10a, we report the test accuracy for each list
operator obtained by all the probabilistic models on ListOps dataset. Also, we report
the performances of a dummy model which simply outputs the most frequent digit
for each operator. Observing the figure, it is clear that CP-HRTM obtains the same
performances of the dummy model; thus, it is not able to learn the semantic of any
digit operator. SP-HRTM and HOSVD-HRTM achieve better results than CP-HRTM;

82 Chapter 4. Tensor Decompositions for Recursive Tensor Models

nevertheless, these results are not satisfactory.

MAX MED SM MIN0

20

40

60

80

100
No

de
 A

cc
ur

ac
y

SP-HRTM
CP-HRTM
HOSVD-HRTM

TT-HRTM
Most Freq.

(a) HRTMs.

MAX MED SM MIN0

20

40

60

80

100

No
de

 A
cc

ur
ac

y

Sum-RecNTN
Full-RecNTN
CP-RecNTN

HOSVD-RecNTN
TT-RecNTN

(b) RecNTNs.

MAX MED SM MIN0

20

40

60

80

100

No
de

 A
cc

ur
ac

y

Sum-LSTM
Full-LSTM
CP-LSTM

HOSVD-LSTM
TT-LSTM

(c) LSTM-based models.

Figure 4.10: Test node accuracy for each operator in the ListOps
task.

In the case of SP-HRTM, these poor results are mainly motivated by the indepen-
dence assumptions introduced by the SP approximation. The separation of the child
contributions makes difficult the learning of operators such as MED and SM, where
the final output is highly dependent on all the inputs of the operator.4

HOSVD-HRTM fails to solve the ListOps task due to the clustering performed by
the rank variables. In the experiments, we validate R ∈ {2, 3} (see Table 4.2); hence,
hidden states are clustered in 2 or 3 groups before being combined by the probability
distribution induced by the core tensor. The clustering does not allow learning the
behaviour of the digit operators. For example, we expect that in MAX e MIN operator
the clustering can be useful to separate higher digit (e.g. {7, 8, 9}) form lower digit
(e.g. {0, 1, 2}). Nevertheless, to achieve an accuracy of 100%, the rank should be set
equals to 10, losing the compression ability of the HOSVD approximation.

4On the contrary, in MAX e MIN operator the value of a single input element can be strongly corre-
lated with the output operator. Let us consider the output of the following expression: MIN(0, x, y, z):
regardless the value of x, y and z, the output is always 0.

4.4. Experimental Analysis 83

TT-HRTM outperforms all the other probabilistic models on all the operators.
We argue that this result is due to the inductive bias of the TT decomposition which
allows computing the parent hidden state through an iterative process. Each rank
variable can be interpreted as an intermediate result of the computation. Hence, each
operator can be decomposed considering one input element at a time: at each step,
we combine the previous intermediate result with the current input to obtain the
new updated intermediate result. It is worth highlighting that MIN, MAX and SM
operators can be easily computed iteratively. On the other hand, the MED operator
cannot. In fact, if we observe Figure 4.10a, we note that TT-HRTM has the lowest
accuracy in the MED operator. Interestingly, TT-HRTM is the only model which
does not perform as the dummy model on the SM operator.

In Figure 4.10b and Figure 4.10c, we report the test accuracy for each digit
operator obtained by RecNTNs and LSTM-based models on ListOps, respectively.
The behaviour of neural models follows the trend highlighted in the BoolSent task.
Interestingly, most of the failures are concentrated on the SM operator. We argue
that such an operator is difficult to learn due to its non-monotonic behaviour.

4.4.6 Computational Complexity Analysis

To assess the computational complexity of the proposed models, we analyse the time
required by all the models to complete a training epoch on the ListOps task. Figure
4.11a reports the time required by each probabilistic model in relation to the number
of parameters. Note that, in this context, a training epoch comprises an upward and
a downward recursive pass on the input structure (see Appendix D). For the sake
of fairness, we also report time required by the configurations that do not complete
training. Full-HRTM and HOSVD-HRTM are the most demanding models due to
the exponential relation between the number of parameters and the maximum out-
degree. Both models were not able to terminate the training when the hidden size (in
Full-HRTM) or the rank (in HOSVD-HRTM) exceed 4.

Interestingly, SP-HRTM is more demanding than tensor based models such CP-
HRTM and TT-HRTM. This is motivated by the exponentiation required to marginalise
the switching variable (see Section 4.4.1).

In Figure 4.11b and Figure 4.11c, we report the epoch running time of RecNTNs
and LSTM-based models, respectively. Note that, in neural models, a training epoch
comprises a forward pass to compute the model output and a backward pass to
compute the gradients and to update the parameters. Clearly, LSTM-based models
are more demanding than RecNTNs. In both contexts, the sum-based models are the
least demanding ones. Surprisingly, the full-tensor models are more efficient than the
models which leverage tensor decompositions (for the same number of parameters).
We argue that this behaviour is due to the optimisation of the back-end code. Hence,
less computation on large operands (as in the case of full tensor models) are faster than
more computation on small operands (as in the case of tensor decompositions).Neural

84 Chapter 4. Tensor Decompositions for Recursive Tensor Models

104 105

Num. of params
0

5000

10000

15000

20000

Av
g.

 T
im

e
Tr

. E
po

ch
 (s

) OOR

SP-HRTM
Full-HRTM
CP-HRTM

HOSVD-HRTM
TT-HRTM

(a) HRTMs time.

105 106

Num. of params

400

600

800

1000

1200

Av
g.

 T
im

e
Tr

. E
po

ch
 (s

)

Sum-RecNTN
Full-RecNTN
CP-RecNTN

HOSVD-RecNTN
TT-RecNTN

(b) RecNTNs time.

105 106 107

Num. of params

2000

4000

6000

8000

Av
g.

 T
im

e
Tr

. E
po

ch
 (s

)

Sum-LSTM
Full-LSTM
CP-LSTM

HOSVD-LSTM
TT-LSTM

(c) LSTM-based models time.

Figure 4.11: Average time required by all the configurations tested to
complete a training epoch on the ListOps task. For each configuration,
we report the average time needed to complete a single training epoch

in relation to the number of parameters.

4.5. Conclusion 85

Models based on the TT approximation are the most demanding one due to the
sequential processing of hidden child nodes imposed by the decomposition itself.

Even if the neural models which leverage tensor decompositions are slower than the
full-tensor models when they have the same number of parameters, it is worth recalling
that the tensor decompositions are fundamental to compress full-tensor models. In
fact, for high values of L, the full tensor parameter cannot be even stored in the
memory (see Section 2.4).

4.5 Conclusion

In this chapter, we have shown how tensor decomposition can be used to represent
tensor state-transition functions in a compressed format. By imposing such a succinct
representation, we obtain novel recursive models having decomposition factors as
parameters. We have introduced nine different recursive models applying three tensor
decomposition (i.e. CP, HOSVD, TT) on three model classes (i.e. probabilistic, neural
and LSTM-based).

A key point of our analysis has been the study of the inductive bias introduced by
each decomposition. In probabilistic models, the inductive bias can be interpreted
as a set of independence assumptions imposed among the child hidden states. On
the other hand, in neural models, the inductive bias is obtained by modifying the
computational graph of the multi-affine map in the neural state-transition function.
Regarding the different interpretations, all the recursive models which leverage tensor
decompositions define a new hyper-parameter which regulates the trade-off between
their expressiveness and their compression ability. Such a hyper-parameter corresponds
to the decomposition rank.

Finally, we have experimentally assessed the advantages of the tensor-based models.
To this end, we have introduced an ad-hoc task on boolean expressions. Despite
the simplicity of the task, the results obtained have shown that the sum-based and
the full-tensor neural models achieve performances comparable with a dummy model
which simply outputs the most probable answer. In the sum-based models, we have
argued that these performances are due to their strong inductive bias which impose
an independence assumption among the child hidden states. In the full-tensor models,
we have argued that the poor performances are due to the strict relation between their
model complexity and the hidden state size. Even if small hidden state size should be
sufficient to solve the task, the learning procedure is not able to infer that the hidden
states should represent intermediate results rather than structural encodings. On the
other hand, all the models based on the tensor decompositions (except CP-HRTM)
always achieve 100% accuracy, independently of the model class, using a small number
of parameters.

We have also conducted a second set of experiments on a benchmark from literature.
The results obtained have confirmed the behaviour highlighted in the previous task.
Moreover, we have analysed the computational cost of the proposed models, showing

86 Chapter 4. Tensor Decompositions for Recursive Tensor Models

that the neural models which leverage tensor decompositions are surprisingly slower
than the full-tensor models when they have the same number of parameter. We
have argued that this behaviour is attributable to optimisations in the computational
backend, which favour execution of fewer operations on larger operands rather than
more operations on small operands. Nevertheless, for large values of L, the full-
tensor models could not even be stored in memory and the tensor decompositions are
fundamental to reduce the number of parameters.

87

Chapter 5

Tensor Models for Unbounded
Structured Data

5.1 Introduction

In many application domains, the maximum out-degree L of the input structures
is not known. For example, in programming language processing, programs are
represented through their abstract syntax trees. In this representation, each internal
node represents a construct of the programming language and its child nodes represent
the arguments of the construct. Some constructs do not have a fixed number of
arguments, e.g. the sequential construct takes a list of commands as input and it
executes all of them in the given order. Thus, abstract syntax trees are unbounded
structures, i.e. their maximum out-degree L cannot be determined. Another domain
where unbounded structures arise is natural language processing. In this context,
sentences can be represented as trees where internal nodes represent syntactic categories
and leaf nodes represent words. Especially in this domain, unbounded structures are
converted to binary trees through a procedure called binarisation.

The recursive models introduced in the previous chapters cannot be used in this
context. For example, the full-tensor models are parametrised by a L-way tensor; if
the value of L is not known, their tensor parameters cannot be defined. Also, the
recursive models based on tensor decompositions cannot be defined since they require
the definition of a parameter for each child position.

This chapter aims to introduce new tensor-based recursive models which can learn
from unbounded structures. To this end, we propose to combine tensor decompositions
with a weight sharing constraint (see Section 2.2.2) imposed on decomposition factors.
Unfortunately, this strategy cannot be applied to all tensor decompositions. For
example, the HOSVD approximation still requires the definition of the core tensor
(whose size depends on L) even if the weight sharing constraint is imposed.

The usage of weight sharing constraints on the state-transition parameters has
been already proposed in the literature (e.g. [59, 159]). However, the weight sharing
constraint usually leads to the definition of a state-transition function which ignores
the child nodes order. As far as we know, there are two models in the literature
which are able to handle unbounded structures without ignoring children order: the

88 Chapter 5. Tensor Models for Unbounded Structured Data

Tree-Based Convolutional Neural Network [120] and the Multi-way Tree-LSTM [149].
The former achieves such a result imposing a softer weight sharing constraint: the
parameters used to process a child node are obtained as a convex combination of two
matrices. The combination coefficients depend on the child node position. The latter
combines child information by using a bi-directional LSTM.

When weights sharing constraints are combined with tensor decompositions, the
ability to exploit child nodes order depends on the approximation inductive bias.
While the CP approximation leads to a state-transition function that ignores children
order, the TT approximation exploits such information.

We experimentally assess the effectiveness of the proposed models on natural
language processing tasks. In particular, we compare our models with baseline models
that manage both binary and unbounded constituency trees.

In Section 5.2, we discuss in detail the formulation of the tensor decompositions with
weight sharing constraints. Then, we introduce new probabilistic and neural recursive
models for unbounded structures that leverage the CP and the TT approximation. In
Section 5.3, we deeply analyse the performances of such models on natural language
processing tasks. In particular, we compare their results with well-known baseline
models highlighting the advantages of tensor decomposition bias. Finally, in Section
5.4, we draw our conclusion.

5.2 Infinite Recursive Tensor Models

In this section, we discuss how tensor decompositions can be combined with weight
sharing constraints. Then, we introduce two infinite tensor approximations by im-
posing a weight sharing constraint to the CP and TT decomposition factors. These
new approximations are the bases for defining new tensor models which learn from
unbounded structures.

5.2.1 Tensor Decompositions and Weight Sharing

In Section 4.2, we have shown how tensor decompositions can be used to approximate
tensor-based state-transition functions, obtaining recursive models whose parameters
are the decomposition factors. Unfortunately, such models cannot be applied on
unbounded structures since they associate a different parametrisation for each child
node position. Thus, the number of child nodes (i.e. the structure out-degree L) must
be known.

To overcome this limitation, we impose a weight sharing constraint on model
parameters. In particular, we impose that the parameters used to process each child
node is shared across all positions. Due to the relation between model parameters
and decomposition factors, this is equivalent to impose a weight sharing constraint on
the decomposition factors.

5.2. Infinite Recursive Tensor Models 89

In the case of the HOSVD approximation, this constraint is not enough to guarantee
the independence between the model definition and L. In fact, the HOSVD decom-
position combines child information through a multi-linear operator parametrised by
a L-th order tensor (i.e. the core tensor). Thus, even if we impose a weight sharing
constraint on the mode matrices, the definition of the core tensor still depends on the
value of L.

In the next two sections, we show how the CP and TT approximation can be
combined with a weight sharing constraint. Moreover, we show how these approxima-
tions can be used to define probabilistic and neural recursive models for unbounded
structures. As in the previous chapter, we focus only on the state-transition functions
ignoring the input label. Note that the weight sharing constraint does not affect the
learning algorithm.

5.2.2 Infinite Canonical Approximation

Let T ∈ R(C+1)×···×(C+1)×C be a (L+ 1)-way tensor, its infinite CP approximation is
defined as:

T [j1, . . . , jL, k] ≈
R∑
r=1

U [j1, r] . . .U [jL, r]Q[k, r], (5.1)

where the matrix U ∈ R(C+1)×R is the factor matrix shared among the first L
dimension (i.e. the dimensions associated to the child information) and the matrix
Q ∈ RC×R is the factor matrix associated to the last dimension. Thus, the number of
parameters required is O(CR).

Note that with such a constraint, the CP approximation becomes permutational
invariant on the first L dimensions. Thus, recursive models which leverage infinite CP
approximation define a state-transition function that ignores the child nodes order.

The aforementioned property establishes an interesting connection between the
infinite CP approximation and symmetric tensors (see Definition 2.9). In particular,
we can state that this approximation can represent only tensors that are symmetric
on the first L dimensions.

This connection it is useful to understand the expressive power of the approximation
introduced. It can be shown that the CP approximation can represent any symmetric
tensors if the same factor matrix is shared among all dimensions [41]. The value of the
rank which makes the approximation an identity is called the symmetric tensor rank.
In general, the symmetric tensor rank of a symmetric tensor is always greater or equal
than its tensor rank [41, 150]. Thus, we argue that the infinite CP approximation can
represent any symmetric tensors on the first L dimension. The value of R indicates
the symmetric tensor rank of the approximation.

90 Chapter 5. Tensor Models for Unbounded Structured Data

Probabilistic Interpretation (Infinite-CP-HRTM)

If we interpret factor matrices as probability distributions, we obtain the following
state-transition distribution:

P (hv | hv1, . . . , hv|ch(v)|,P) ≈
∑
rv

P (hv | rv,Q)
|ch(v)|∏
l=1

P (rv | hvl,U), (5.2)

where both Q and U should satisfy probability constraints.

Neural Interpretation (Infinite-CP-RecNTN)

The same approximation can be used to define the multi-affine map of a neural tensor
state-transition function:

T (h̄v1, . . . , h̄v|ch(v)|) ≈ Q

|ch(v)|⊙
l=1

UTh̄vl

 . (5.3)

5.2.3 Infinite Tensor-Train Approximation

Let T ∈ R(C+1)×···×(C+1)×C be a (L+ 1)-way tensor, its infinite TT approximation is
defined as:

T [j1, . . . , jL, k] ≈
R1∑
r1

· · ·
RD−1∑
rD−1

G[⊥, j1, r1] . . .G[rL−1, jL, rL] . . .Q[rL, k], (5.4)

where G ∈ R(R+1)×(C+1)×(R+1) is the core tensor shared among the first L dimension;
we use the special value ⊥ to include the first core matrix in the definition of G. The
value of R is the rank of the approximation. Thus, the number of parameters required
is O(CR2).

As we have shown in Section 4.2.4, the TT approximation aggregates child informa-
tion iteratively, considering one child at a time. Each child hidden state is aggregated
to the previous intermediate result by applying the corresponding core tensor, which
is different for each child position. Thus, the weight sharing constraint imposed on
the core tensors forces the application of the same multi-linear operator at each step.
From this point of view, the infinite TT approximation defines a recursive process
which aggregates child information. Clearly, even if the core tensor is shared across
all the first L dimensions, the output of this recursive process depends on the child
nodes order.

The recursive process induced by the infinite TT approximation establishes a
connection between TT decomposition and recursive models for sequences (see Section
2.3.2). In the probabilistic context, the infinite TT approximation is equivalent to
the so-called translation invariant or uniform Matrix Product States (uMPS) with a
positivity constraint imposed on the core tensor [2]. It can be shown that non-negative
uMPS are equivalent to HMMs [42, 97, 66, 2]. Nevertheless, it is worth highlighting
that uMPS (and also the infinite TT approximation) do not impose that the probability

5.3. Application to Natural Language Processing 91

distribution represented by the core tensor G decomposes into a state-transition and
an output distribution (as it happens in HMMs). In the neural context, the connection
with RNNs is more delicate due to the non-linear activation function [92, 91] that is
missing in the TT decomposition.

Probabilistic Interpretation (Infinite-TT-HRTM)

If we interpret core tensors as probability distributions, we obtain the following
state-transition distribution:

P (hv | hv1, . . . , hv|ch(v)|,P) ≈
∑
rv1

· · ·
∑
rvL

|ch(v)|∏
l=1

P (rvl | rvl−1, hvl,G)P (hv | rv|ch(v)|Q),

(5.5)
where G and Q should satisfy the probability constraints. Moreover, we assume
rv0 = ⊥.

Neural Interpretation (Infinite-TT-RecNTN)

The same approximation can be used to define the multi-affine map of a neural tensor
state-transition function:

T (h̄v1, . . . , h̄v|ch(v)|) ≈ QT
(
G
(
. . .G

(
G(⊥, h̄v1), h̄v2

)
. . . , h̄v|ch(v)|

))
. (5.6)

5.3 Application to Natural Language Processing

In this section, we show how the infinite models proposed in this chapter can be used
in Natural Language Processing (NLP) tasks. The NLP domain is a natural choice to
assess our proposal for two reasons: (1) it is an active application domain for recursive
models and (2) most recursive models rely on binary-versions of the input structures.

5.3.1 Sentences as Structures

A central problem in NLP is the learning of a distributed encoding of sentences, as
this is the stepping stone for many NLP tasks (e.g. sentence classification, sentiment
analysis and natural language inference). A key design choice in developing such
models is how the input data (i.e. sentences) are represented.

The simpler sentence representation is the bag-of-words, which depicts the sentences
as words multi-sets ignoring the words order. Despite its simplicity, this representation
has been used to obtain meaningful sentences encodings [89, 173, 5].

The sequence representation overcomes the limitation of bag-of-words by consider-
ing the sentences as an ordered sequences of words. Thus, the words order matters.
This representation allows building models that progressively constructs the sentence
encoding, processing one word at a time. Moreover, it paves the way for applying
recurrent models for sequences, such as HMM, RNN and LSTM (see Section 2.3.2), in
the NLP domain.

92 Chapter 5. Tensor Models for Unbounded Structured Data

ROOT

X

NP

ADJP

JJ

Effective

CC

but

JJ

too-tepid

NN

biopic

(a) Original.

Effective but too-tepid

biopic

(b) Unbounded.

Effective

but too-tepid

biopic

(c) Binary.

⊥

⊥

⊥ Effective

but

too-tepid

biopic

(d) TreeNet [32].

Figure 5.1: Constituency tree of the sentence "Effective but too-tepid
biopic" taken from the Sentiment Stanford Treebank [153] test set.

A key aspect of the sentences, which is missing in the sequential processing, is the
compositionality. For example, the sentence “The sky is blue and the grass is green” is
obtained by composing the two sub-phrases “The sky is blue” and “the grass is green”
with the conjunction “and”. The intrinsic compositionality of the sentences makes
them suitable for a tree representation, where the whole sentence (the root) is built in
terms of sub-phrases (the internal nodes) which in turn are defined in terms of smaller
constituents; the base cases are the words (the leaves) since they are the atomic piece
of information. This representation takes the name of constituency tree. In Figure
5.1a, we show the constituency tree of the sentence “Effective but too-tepid biopic”:
the leaves are the words while internal nodes represent syntactic categories which are
the constituents of the whole sentence.

The constituency trees allow using recursive models to build sentences encodings.
The idea is to interpret the hidden states produced by these models as the distributed
representation of the sentence. The hidden state of the root is the encoding of the
whole sentence, while the hidden states of the internal nodes are the encodings of
sentence sub-phrases. In general, we cannot define an upper bound on the number of
child nodes in constituency trees.

A common technique to remove the unboundedness of the tree structures is
the binarisation. The aim of the binarisation is to transform a generic L-ary tree
into a binary tree. However, the price to pay is the loss of structural information.
For example, in Fig. 5.1b and Fig. 5.1c we report the constituency and the binary
constituency tree of the sentence “Effective but too-tepid biopic”. By comparing these
two representations, we can observe that the binary tree has one more node that
breaks the ternary relation in the unbounded tree; in general, to break a node with
L child nodes, we should add L− 2 new nodes. All these new nodes create a chain
which moves away the child nodes of the L-ary relation from their parent. Moreover,
their composition is obtained by considering one child at a time, as it happens in the
sequence representation. Hence, the binarisation removes the equality among child
nodes, with the risk of weakening the contribution of child nodes that are moved far
away from their parent and strengthening the contribution of the ones that remain
close.

5.3. Application to Natural Language Processing 93

5.3.2 Related Works

There are many models which compute a sentence encoding starting from its con-
stituency tree. For our purposes, we restrict the discussion to the recursive models
which fit in the framework discussed in Section 2.3.

Within this framework, recursive neural models seems to be preferred over proba-
bilistic models. For example, the Matrix-Vector Recurrent Neural Network [152] and
the Recursive Neural Tensor Network [153] are specialisation of the RecNN architecture
to binary constituency trees.

Also Tree-LSTMs has been proposed by Tai et al. [159] to tackle NLP tasks. In
particular, they propose two different Tree-LSTM architectures: the N -ary Tree-
LSTM, which is the architecture we introduced in Section 2.3.3, and the Child-Sum
Tree-LSTM. The former architecture is applied to binary constituency trees. The
latter is able to handle unbounded structures but has been applied only to dependency
trees, which are another kind of tree representation for sentences.

In recent years, Tree-LSTMs have been used as a building block to develop more
sophisticated models. For example, [88], [108], [94], [148] build new Tree-LSTM models
which define dynamic state-transition functions depending on syntactic categories (i.e.
Part-Of-Speech tags). Instead, [162] introduces a Bidirectional Tree-LSTM which
takes advantage of both parsing directions: bottom-up and top-down. As we stated
before, the constituency trees are intrinsically bottom-up; to this end, the author
introduces a first bottom-up pass, called head lexicalization, to propagate information
from the leaves to the root. All these models are applied only to binary constituency
trees.

As far as we know, the only work which builds a model suitable for unbounded
constituency trees is the TreeNet [33]. The idea is to consider all the child nodes in
a chain: the hidden state of a node depends on the hidden state of its left sibling
and its rightmost child. Even if the model itself works with unbounded trees, the
state-transition function defined is binary since it always composes two elements.

Before continuing with our experimental analysis, in the next two paragraphs, we
describe two models which are particularly relevant for our assessment: Child-Sum
Tree-LSTM and TreeNet. In particular, we highlight (1) the connection between
Child-Sum Tree-LSTM and infinite models introduced in this chapter and (2) the
binarisation introduced by TreeNet state-transition function.

Child-Sum Tree-LSTM. Child-Sum Tree-LSTM [159] extends the Tree-LSTM
(see Section 2.3.3) under the assumption that there is no order among child nodes.
The Child-Sum Tree-LSTM state-transition is completely determined by the following

94 Chapter 5. Tensor Models for Unbounded Structured Data

equations:

iv = σ

W ixv +
|ch(v)|∑
l=1

U ihvl + bi
 , (5.7a)

ov = σ

W oxv +
|ch(v)|∑
l=1

U ohvl + bo
 , (5.7b)

uv = σ

W uxv +
|ch(v)|∑
l=1

Uuhvl + bu
 , (5.7c)

fvl = σ
(
W fxv +U fhvl + bf

)
∀l ∈ [1, |ch(v)|], (5.7d)

cv = iv � uv +
|ch(v)|∑
l=1

fvl � cvl, (5.7e)

hv = ov � tanh(cv). (5.7f)

Observing Eq. (5.7), we can deduce that Child-Sum Tree-LSTM can be derived
from the L-ary Tree-LSTM (see Section 2.3.3) by imposing a weight sharing on the
matrices which process the child nodes. Thus, this model can be interpreted as
the generalisation of the first-order approximation of RecNTN (see Section 3.3.2) to
unbounded input structures. In fact, as the Infinite-CP-RecNTN combines the CP
approximation with a weight sharing constraint, the Child-Sum Tree-LSTM combines
the first-order approximation with a weight sharing constraint. For this reason, we
refer to this model as Infinite-Sum-LSTM.

TreeNet. TreeNet [33] has been introduced with the aim of learning from unbounded
tree-structured data. The idea is to process child nodes sequentially from left to right;
only the rightmost child node is linked to the parent node. Hence, each node composes
the information coming from two sources: its left sibling and its rightmost child.
Formally, the composition is defined by the following equations:

ov = σ (U o
shvs +U o

chvc + bo) , cv = fvs � cvs + fvc � cvc,

fvk = σ
(
U f
kshvs +U f

kchvc + bfk
)
, k ∈ {s, c}, hv = ov � tanh(cv),

(5.8)
where {hvs, cvs} ∈ RC are the hidden state and the memory cell of left sibling of v,
while {hvc, cvc} ∈ RC are the hidden state and the memory cell of the rightmost child
node of v.

If the node v is a leaf, its hidden state depends solely on the input label xv:

iv = σ
(
W ixv + bi

)
, ov = σ (W oxv + bo) , uv = σ (W uxv + bu) ,

cv = iv � uv, hv = ov � tanh(cv).
(5.9)

Observing Eq. (5.8), we can argue that TreeNet cell is a binary Tree-LSTM cell

5.3. Application to Natural Language Processing 95

Infinite Models Binary Models

Approx. Probabilistic LSTM-based LSTM-based

CP Infinite-CP-HRTM Infinite-CP-LSTM -
TT Infinite-TT-HRTM Infinite-TT-LSTM -

Existing Infinite-SP-HRTM Infinite-Sum-LSTM [159] Binary Sum-LSTM [159]
TreeNet [33]

Table 5.1: List of all the models assessed on NLP tasks.

(see Section 2.3.3) without the input gate and the update value. In fact, in both
models, all the gates are computed by composing two constituents. The TreeNet
defines the constituents of a node as its left sibling and its rightmost child, while the
binary Tree-LSTM used directly its left and right child node. Hence, the difference
between these two models lies on how the tree is binarised, rather than on how the
tree is processed. In Figure 5.1d, we show an example on how a constituency tree is
binarised according to the TreeNet; the constituent ADJP of the original constituency
tree (see Figure 5.1a) is composed of three words: “Effective”, “but”, “too-tepid”. The
TreeNet breaks this ternary relation processing one words at a time; as we can see in
Figure 5.1d, the node which has the first word “Effective” is combined with a bottom
node since it does not have a left sibling. The result is then fused with the word
“but”. Finally, also the word “too-tepid” is combined with the result of the previous
composition, obtaining the encoding of the constituent ADJP. Hence, the original
ternary relation is broken into a sequence of three binary relations (one for each word)
each of them combines the composition of the previous words with the new word.

5.3.3 Experimental Analysis

In this section, we experimentally assess the effectiveness of the infinite approximations
proposed in the NLP tasks. In particular, we evaluate two probabilistic and two neural
models for unbounded structures. The probabilistic models are the Infinite-CP-HRTM
and the Infinite-TT-HRTM. As neural models, we assess the Infinite-CP-LSTM and
the Infinite-TT-LSTM. These two models are obtained by using the infinite neural
multi-affine maps to compute LSTM gates (see Section 4.3). We do not evaluate
Infinite-CP-RecNTN and Infinite-TT-RecNTN since the LSTM cells usually perform
better in the NLP domain.

We also evaluate three other baseline models: Infinite-Sum-LSTM, Binary Sum-
LSTM and TreeNet. The former is useful to assess the difference between tensor
approximations and the first-order approximation on unbounded structures; Binary
Sum-LSTM and TreeNet are useful to assess the difference between unbounded and
binary constituency trees. In Table 5.1, we report all the models evaluated in our
analysis.

For the sake of completeness, we also evaluate the probabilistic model which is
obtained by combining SP approximation (see Section 3.3.1) with weight sharing
constraints. We briefly introduce this model in the next paragraph.

96 Chapter 5. Tensor Models for Unbounded Structured Data

Infinite SP-HRTM. Infinite-SP-HRTM is the generalisation of SP-HRTM (see
Section 3.3.1) to unbounded input structures. Such a generalisation is obtained by
imposing a stationarity assumption on the mixture components of the state-transition
distribution. Recalling the SP state-transition distribution definition:

P (hv | hv1, . . . , hvL) =
L∑

Sv=l
P (Sv = l)P (hv | Sv = l, hvl), (5.10)

we impose that the parametrisation of the mixture components does not depend on
child position l. Moreover, we assume that P (Sv = l) is a uniform distribution and
it is not learned. In this way, we are able to define the mixture distribution even
if the maximum out-degree L is unknown. Thus, we obtain the following infinite
state-transition distribution:

P (hv | xv, hv1, . . . , hvL) = 1
|ch(v)|

|ch(v)|∑
Sv=l

P (hv | Sv = l, xv, hvl,U), (5.11)

where U ∈ R(C+1)×C
≥0 is the parameter shared across all the mixture components. The

Infinite-SP-HRTM requires O(C2) parameters.
The major drawback of this definition is that we assign the same weight to each

child contribution. Thus, we lose the ability of the SP approximation to learn from
data the child nodes positions that are more relevant for the parent hidden state.

Tasks

We evaluate the performances of the proposed infinite tensor models on two NLP
tasks: the sentence classification and the semantic textual similarity task. In the
following, we describe the dataset used in our experiments for each task.

Sentence Classification. In the sentence classification task, the goal is to predict
the class of a given input sentence. The class is usually a discrete label. This task can
be tackled by recursive models as super-source transductions. To this end, recursive
models process the input sentence to produce a succinct representation. Then, the
succinct representation is used to predict the class of the whole input sentence.

Sentiment Stanford Treebank (SST) [153]. The SST dataset consists of
11855 constituency trees divided as follows: 8544 trees in the training set, 1101 trees
in the validation set and 2210 in the test set. Sentences have been extracted from film
reviews dataset and then parsed using the Stanford parser [153]. We refer to [153] for
a detailed description of the dataset generation procedure.

SST attaches a sentiment label for all internal nodes in the dataset. The label
yv of an internal node v indicates the sentiment of the sub-phrase represented by
v. The label of a root node indicates the sentiment of the whole sentence. Each
sentiment label yv can take five values: very negative, negative, neutral, positive, and

5.3. Application to Natural Language Processing 97

very positive. This sentiment classification is usually denoted as fine-grained. We refer
to the dataset with the fine-grained labels as SST-5.

The same dataset is also used for a binary sentiment classification task, in which
there are only two sentiment labels: negative and positive. In this setting, all neutral
sentences are excluded and all negative (positive) sentences are collapsed in one
cluster. Hence, the binary dataset contains less input trees. In particular, it contains
6920/872/1821 trees in the training, validation and test set, respectively. We refer to
the dataset with the binary labels as SST-2.

The SST input constituency trees are already binarised. Thus, they cannot be
used to assess models for unbounded structures. To remove such a binarisation, we
re-parse all sentences.

By removing the binarisation, it is no longer possible to attach a sentiment label to
all internal nodes. In fact, unbounded constituency trees define new sub-phrases that
may not exist in the binary dataset. Thus, they cannot be labelled. As a reference,
note that SST-5 binary constituency trees data contains 119.413 labels, while the
unbounded constituency trees data contains only 91.536 labels.

TREC [107]. The TREC dataset consists of 5952 questions divided as follows:
4952 questions in the training set, 500 questions in the validation set and 500 questions
in the test set. The questions have been retrieved from different sources and they have
been manually labelled according to the semantics of their answers. We refer to [107]
for a detailed description of the dataset generation procedure.

There are 6 possible question class: ABBREVIATION, ENTITY, DESCRIPTION,
HUMAN, LOCATION and NUMERIC VALUE. Each class is divided in sub-classes,
for a total of 50 fine-grained classes. In our work, we use only the coarse classification.

Semantic Textual Similarity. In semantic textual similarity task, the goal is to
predict the similarity between two sentences. The similarity is usually measured as a
score or label. This task cannot be tackled as a structural transduction since we have
two input structures. Nevertheless, we can still use recursive models to produce the
encodings of the input sentences. Such encodings are then combined to compute the
similarity between input sentences.

Sentences Involving Compositional Knowledge (SICK) [113]. The SICK
dataset consists of 9927 sentence pairs divided as follows: 4500 pairs in the training
set, 500 pairs in the validation set and 4927 pairs in the test set. Sentences are derived
from image and video description datasets, including only the sentences which contains
relation among general concepts (e.g. the relation between a bride and a groom) [113].
We refer to [113] for a detailed description of the dataset generation procedure.

For each input pairs, two output values are provided: a relatedness score ŷrel and
an entailment label ŷent. The relatedness score is a real value ranging from 1 to 5
which measures the degree of the semantic similarity between the input sentences. On

98 Chapter 5. Tensor Models for Unbounded Structured Data

the other hand, the entailment label indicates the entailment relation holding between
the input sentences. Let (A,B) be an input sentence pair, the possible attached
entailments are:

Entailment: the sentence B cannot be false when A is true.

Contradiction: the sentence B is false when A is true.

Neutral: the truth of B could not be determined on the basis of A.

In the remainder of the section, we denote as SICK-R and SICK-E the SICK
dataset with the relatedness scores and the entailment labels, respectively.

Experimental Settings

In this section, we describe the experimental settings used to conduct our analysis.
Besides the experimental setup for probabilistic and neural models, we also detail
the preprocessing procedure used to generate the input constituency trees. The
implementation code of the infinite models and the sentence preprocessing pipeline
can be found here.1. See Section 4.4.1 for more details on the model implementations.

Data Preprocessing. Constituency trees are built using the PCFG constituency
parser of the Stanford Core NLP [112]. Also, we binarise them by computing the
Chomsky Normal Form available in the Natural Language Tool Kit [21]. To facilitate
the learning process, we collapse all unary relations. In all the experiments, we remove
internal input labels which represent the syntactic categories since this information is
not exploited by the assessed models.

We represent the words attached to the leaf nodes by 300-dimensional vectors
initialised using Glove word embeddings [132]. Note that we prefer to use Glove
embeddings rather than state-of-the-art embeddings (such as BERT [47] or ELMo
[134]) because we would make a fair comparison between the proposed models and
the models used as baselines (e.g. Tree-LSTM and Tree-Net). The models used as
baselines have been already tested using the Glove embeddings. Also, it is worth
highlighting that the purpose of the proposed experiments is to show that tensor-based
models can learn interesting properties of NLP tasks. From this point of view, we
believe that the usage of more powerful embeddings is negligible.

Probabilistic Models Configurations. Probabilistic models tackle sentence clas-
sification tasks as transductions. In particular, the SST task is addressed as a structural
transduction since an output label is associated for each input node. On the contrary,
the TREC task is addressed as super-source transduction since the output label is
attached only to the root nodes. In both cases, the output labels are categorical.
Thus, the generation of the output labels is handled through a categorical emission
distribution. We do not assess the probabilistic models on the semantic textual

1https://github.com/danielecastellana22/tensor-tree-nn

https://github.com/danielecastellana22/tensor-tree-nn

5.3. Application to Natural Language Processing 99

Hyper-parameters Values

C R

Infinite-SP-HRTM {20, 50, 100} -
Infinite-CP-HRTM {20, 50, 100} {20, 50, 100}
Infinite-TT-HRTM {20, 50, 100} {10, 20}

Table 5.2: Hyper-parameters values validated for each HRTM on
NLP tasks.

similarity task due to the poor performances obtained on the sentence classification
task.

Input labels are attached only to the leaf nodes. On the internal nodes, we attach
a special label ⊥. Thus, the same state-transition parametrisation is used on all the
internal nodes. The input labels of the leaf nodes are 300-dimensional vectors and
they are modelled as continuous random variables. Therefore, we cannot define the
prior distribution P (hv | xv) since the hidden variable Hv is discrete while the input
variable Xv is continuous. As we have already shown in Section 3.2.1, we handle the
continuous input variable by defining the distribution P (xv | hv). Such a distribution
is continuous and its parametrisation depends on the state hv. In our case, we define
P (xv | hv) as 300-dimensional multivariate Gaussian distribution with a diagonal
covariance matrix:

xv ∼ N (µhv , diag(σ2
hv

)), (5.12)

where µhv ∈ R300 and σhv ∈ R300 are the parameters of the distribution. Note that
each parameter depends on the hidden state hv. The distribution P (xv | hv) requires
C×300 parameters for all the mean values and C×300 parameters for all the variance
values. This formulation allows inferring the leaf hidden state hv given the word
embeddings xv since P (hv | xv) ∝ P (xv | hv)P (hv) ∝ P (xv | hv). The last equality
holds because we do specify a flat prior.

Since input structures are singly connected, all probabilistic models are trained
through tailored versions of the EM algorithm detailed in Appendix D. We execute the
EM algorithm for a maximum of 200 iterations. Also, we use early-stopping criteria
on the validation root accuracy to stop the training if the root accuracy does not
increase for 50 consecutive iterations.

We perform a model selection on the validation set to find the best hyper-parameters
configuration. We validate only two hyper-parameters: the number of hidden states C
and the rank R (if it is used). We choose to validate only these two hyper-parameters
because they are strictly related to the model expressiveness and the number of
parameters required. In Table 5.2, we report the hyper-parameters values validated.

Neural Models Configurations. As in probabilistic models, we assume a spe-
cial label ⊥ attached to each internal node. Thus, the state-transition function
parametrisation is the same for all the internal nodes. The hidden states of leaf nodes
are computed by applying a one-layer NN: hv = σ(W xx̄v), where v is a leaf node,

100 Chapter 5. Tensor Models for Unbounded Structured Data

xv ∈ R300 is the word embedding attached to v, σ is the sigmoid activation function
and W ∈ C × 301 is the augmented matrix which parametrises the neural layer.

The output layer depends on the task. In the sentence classification tasks, the
output layer is a one-layer MLP defined as:

sv = ReLU
(
W ′hv + b′

)
, pv = softmax

(
W ′′sv + b′′

)
, (5.13)

where sv ∈ RS is the hidden representation of the classifier and W ′ ∈ RS×C , b ∈
RS ,W ′′ ∈ RS×K , b′′ ∈ RK are the classifiers parameters. The output of the softmax
layer pv ∈ RK≥0 define a probability distribution over the output label values. The
predicted label yv is the most probable value according to pv, i.e. yv = arg maxk pv[k].
Following [159], we use dropout [155] with rate 0.5 on both hv and sv. In SST task,
the output layer is applied to all the nodes in the input structure. On the contrary, in
TREC task, the output layer is applied only on the root nodes.

The output layer defined for semantic textual similarity is more complicated since
it should provide a mechanism to merge the encodings of the two input sentences. Let
(A,B) the input constituency trees pair, we produce their encodings ha and hb by
applying a recursive neural model on both constituency trees and taking the hidden
state of the roots. Then, we compute the relatedness score yrel ∈ [1,K] as in [159]:

h× = ha � hb, h+ = |ha − hb|, s = σ
(
W+h+ +W×h× + b

)
,

prel = softmax
(
W ′s+ b′

)
, yrel = kTprel,

(5.14)
where s ∈ RS is the hidden representation of the classifier, {W+,W×} ∈ RC×S ,
b ∈ RS ,W ′ ∈ RS×K , b′ ∈ RK are the classifiers parameters and kT = [1, 2, . . . ,K].

Similarly, the entailment label yent is computed:

yent = arg max
k

pent[k], pent = softmax (W es+ be) , (5.15)

where the vector s is computed as in Eq. (5.14).
All neural models are trained minimising a loss function through gradient descent.

In SST, TREC and SICK-E, the loss function is the negative log-likelihood of the
observed labels. Following the experimental setting defined in [159], the loss function
used in SICK-R is the KL-divergence between the vector prel in Eq. (5.14) and a
target sparse distribution p̂rel ∈ RK . Such a target distribution is computed starting
from the true relatedness score ŷrel:

p̂rel[i] =

ŷrel − bŷrelc, if i = bŷrelc+ 1,

bŷrelc − ŷrel + 1, if i = bŷrelc,

0 otherwise.

(5.16)

Note that the following equality holds: ŷrel = kTp̂rel.

5.3. Application to Natural Language Processing 101

Hyper-parameters Values

bs or lr C R S
SS

T

Binary Sum-LSTM {5, 10, 25} {100, 200, 300} - {0, 500, 1000}
Infinite-Sum-LSTM {5, 10, 25} {100, 200, 300} - {0, 500, 1000}
Infinite-CP-LSTM {5, 10, 25} {100, 200, 300} {50, 100, 150} {0, 500, 1000}
Infinite-TT-LSTM {10, 25} {150, 200, 300} {10, 30} {0, 500, 1000}

TreeNet {5, 10, 25} {100, 200, 300} - {0, 500, 1000}

SI
C
K

Binary Sum-LSTM {10, 25, 40} {150, 200, 300} - {50, 100, 200}
Infinite-Sum-LSTM {10, 25, 40} {150, 200, 300} - {50, 100, 200}
Infinite-CP-LSTM {10, 25, 40} {150, 200, 300} {30, 50, 100} {50, 100, 200}
Infinite-TT-LSTM {25, 40} {150, 200, 300} {10, 30} {50, 100, 200}

TreeNet* {0.001, 0.005, 0.008} {150, 200, 300} - {50, 100, 200}

T
R
E
C

Binary Sum-LSTM {10, 25, 40} {150, 200, 300} - {0, 50, 100}
Infinite-Sum-LSTM {10, 25, 40} {150, 200, 300} - {0, 50, 100}
Infinite-CP-LSTM {10, 25, 40} {150, 200, 300} {30, 50, 100} {0, 50, 100}
Infinite-TT-LSTM {25, 40} {150, 200, 300} {10, 30} {0, 50, 100}

TreeNet* {0.001, 0.005, 0.008} {150, 200, 300} - {0, 50, 100}

Table 5.3: Hyper-parameters values validated for each neural model
on NLP tasks. The models with * validate the learning rate lr rather

than the batch size bs.

In all the tasks, we update model parameters using AdaDelta [179] algorithm. The
only exception is TreeNet on SICK and TREC datasets, where we use Adam [95]
algorithm; we choose this algorithm to be consistent with the TreeNet experimental
setting defined in [33]. In the sentiment analysis task, we update also word embedding
during the training. Training is performed for at most 100 epochs. Also, we use
early-stopping criteria on the validation performance to stop the training if the root
accuracy does not increase for 5 consecutive iterations.

For each neural model, we perform a grid-search on the validation set to find
the best hyper-parameters configuration. We validate the following model hyper-
parameters: the number of hidden-states C, the rank R (if it is used) and the number
of hidden units in the output layer S. These hyper-parameters are strictly related to
the model expressiveness and the number of parameters required. Moreover, we also
validate the hyper-parameters of the learning algorithm that could affect the training.
When we use the AdaDelta algorithm, we validate the batch-size bs; the learning rate
is determined automatically by the algorithm. When we use the Adam algorithm, we
validate the learning rate lr and we fix the batch size to 25. In Table 5.3, we report
the hyper-parameters values validated for each neural model.

Performance Measures In sentence classification tasks, we measure model perfor-
mances using the root accuracy (see Section 4.4).

In semantic textual similarity tasks, we use two different performances measures:
the accuracy for entailment labels and the Pearson correlation similarity for relatedness
scores (as suggested in [113]). The Pearson correlation similarity ρ between sample

102 Chapter 5. Tensor Models for Unbounded Structured Data

Tasks

SST-5 SST-2 SICK-E SICK-R TREC

U
nb

ou
nd

ed
Infinite-SP-HRTM 17.3 (0.0) 49.9 (0.2) - - 31.7 (6.3)
Infinite-CP-HRTM 17.3 (0.0) 49.7 (0.0) - - 18.1 (1.0)
Infinite-TT-HRTM 17.3 (0.0) 49.7 (0.0) - - 18.8 (0.0)

Infinite-Sum-LSTM 49.4 (0.6) 85.5 (0.8) 82.6 (0.4) 84.9 (0.2) 91.9 (1.0)
Infinite-CP-LSTM 48.3 (0.8) 85.3 (0.3) 84.2 (0.4) 86.4 (0.1) 90.0 (0.7)
Infinite-TT-LSTM 48.2 (0.5) 86.8 (0.1) 83.9 (0.1) 85.6 (0.2) 90.7 (0.6)

B
in
. Binary Sum-LSTM 51.5 (0.7) 87.9 (0.2) 82.3 (0.5) 84.3 (0.7) 92.3 (0.8)

TreeNet 48.4 (1.5) 87.0 (0.5) 81.2 (0.3) 84.5 (0.3) 91.3 (1.1)

Table 5.4: Results obtained by infinite models on different NLP tasks.
All the values are accuracy except SICK-R, whose score is Pearson’s
correlation multiplied by 100. Values reported are averaged over three

runs (standard deviation in brackets).

points {a1, . . . , aN} and {b1, . . . , bN} is defined as [48]:

ρ(a, b) =
∑N
i=1(ai − ã)(bi − b̃)√∑n

i=1(ai − ã)2
√∑n

i=1(bi − b̃)2
, (5.17)

where ã =
∑N

i=1 ai

N and b̃ =
∑N

i=1 ai

N are the sample means. The value of ρ is always
between 0 and 1. In the SICK-R task, the Pearson correlation is computed between
the true {ŷ1

rel, . . . , ŷ
N
rel} and the predicted {y1

rel, . . . , y
N
rel} relatedness scores.

Results

In Table 5.4, we report the results obtained by all the evaluated models on all
the datasets. All values are averaged over three runs to account for randomisation
effect due to model parameter initialisation. The value of the Pearson correlation is
multiplied by 100.

Probabilistic models fail on the sentence classification datasets. We argue that
these poor performances are mainly attributable to the training algorithm. The
EM algorithm (see Section 2.2.1) maximises the likelihood of the observed data.
Nevertheless, the solution which maximises such a likelihood may not correspond to a
solution where the root hidden state encodes information of the whole input structure.
Due to the inability of probabilistic models to produce meaningful sentence encodings,
we do not assess them on the semantic textual similarity task.

The aforementioned behaviour of the EM algorithm is more evident on the NLP
tasks due to the presence of word embeddings on leaf nodes. Due to the continuity of
the input label, we have defined the multi-variate Gaussian distribution P (xv | hv) to
infer the most probable leaf hidden state hv given the word embedding xv (see Section
5.3.3). In this setting, the EM algorithm tries to maximise also the likelihood of the
input labels learning the distribution P (xv | hv). Considering that the number of leaf
nodes in a tree with V node is O(V), it is reasonable that the EM algorithm prefer

5.3. Application to Natural Language Processing 103

105 106

Num. of Params

85.5

86.0

86.5

87.0

Ro
ot

 A
cc

ur
ac

y

Binary Sum-LSTM
Infinite-Sum-LSTM
Infinite-CP-LSTM

Infinite-TT-LSTM
TreeNet

(a) Validation root accuracy w.r.t. the number
of parameters on SST-2.

|s| 7 7 < |s| 10 |s| > 1078

80

82

84

86

88

Ac
cu

ra
cy

Binary Sum-LSTM
Infinite-Sum-LSTM
Infinite-CP-LSTM

Infinite-TT-LSTM
TreeNet

(b) Test accuracy of neural infinite models on
SICK-E w.r.t. the sentence length.

105 106

Num. of params

85

86

87

88

10
0

* P
ea

rs
on

's
co

rr.

Binary Sum-LSTM
Infinite-Sum-LSTM
Infinite-CP-LSTM

Infinite-TT-LSTM
TreeNet

(c) Validation Pearson’s correlation w.r.t. the
number of parameters on SICK-R.

Figure 5.2: Test and validation results obtained by neural models on
different NLP tasks.

solutions in which the hidden states are used to maximise the likelihood on leaf nodes
rather than to encode sub-phrases meaning.

If we turn our attention on neural models, we notice that results obtained on the
SST dataset (both with fine-grained and binary labels) do not show any improvements
using unbounded constituency trees. However, the comparison is unfair since the
original dataset provides labels on the internal nodes of binary constituency trees
(see Section 5.3.3). If we restrict our attention on infinite models, Infinite-TT-LSTM
outperforms the other two infinite models on SST-2 reaching an accuracy comparable
with TreeNet. Moreover, it requires fewer parameters than other models (see Figure
5.2a).

The results obtained on the SICK dataset show the advantage of combining a
rich representation (such as unbounded trees) and a tensor-based state-transition
function. In fact, both Infinite-CP-LSTM and Infinite-TT-LSTM outperform all the
other models in both the entailment (SICK-E) and relatedness (SICK-R) task. It is

104 Chapter 5. Tensor Models for Unbounded Structured Data

worth to point out that the infinite neural models which leverage tensor decompositions
are the only models which benefit from the unbounded representation. In Figure 5.2b,
we report the test accuracy of each model on SICK-E with respect to the input length
(we consider the maximum between the length of each sentence in the input pairs).
Observing the plot, it is clear that most of the models struggle with long sentences.
Infinite-CP-LSTM and Infinite-TT-LSTM reach an accuracy of approximately 84%,
while the other models stop around 81%. Thus, the unbounded representation of
sentences is beneficial especially when the length of input sentences increase. We argue
that this behaviour is related to the nodes introduced by the binarisation procedure
(see Section 5.3.1), which increase the depth of the constituency trees.

In both SICK-E and SICK-R datasets, the best results are obtained by Infinite-
CP-LSTM. This is more evident observing Figure 5.2c, where we show the validation
results on SICK-R obtained by all the neural models against the number of parameters
they require. We suspect that such performances are due to the inductive bias of CP
approximation, which is extremely useful on these datasets. We discuss this hypothesis
more in detail in Section 5.3.4.

On the TREC dataset, the sum-based state-transition functions seems to be
advantageous over the tensor decompositions counterparts. In fact, the sum-based
models outperform all the other neural models both on binary and unbounded trees.
Also, TreeNet (which is based on summation) reaches results comparable with the
ones obtained by Infinite-Sum-LSTM. We argue that the summation is preferable
for the question classification task, probably due to the intrinsic characteristics of
question sentences.

5.3.4 Qualitative Analysis of Sentences Semantic Entailment

In this section, we analyse in details the prediction of the infinite neural models on
the SICK-E dataset. In particular, we report the prediction on the example #3991 of
the test set. The input pair is composed of the following sentences:

A: The girl has red hair and eyebrows, several piercings in a ear and a
tattoo on the back.
B: The girl has red hair and eyebrows, several piercings in a ear and no
tattoo on the back.

The two sentences are exactly the same, unless the sub-phrase a tattoo in the
sentence A which becomes no tattoo in the sentence B. Hence, the expected output is
“contradiction”. In Figure 5.3a, we plot the constituency tree of the input sentences,
indicating with ? the position where the two sentences differ. Also, we highlight
all the nodes that are in the path between the ? and the root. These are the only
nodes which have a different sub-tree in the two sentences. To analyse how the models
predict the final label, we study how the prediction changes going up through the
structure. In Figure 5.3b, we report the output of the classifier fed with the hidden
states pair (hav,hbv), where hav (hbv) is the hidden state of the node v computed by the

5.4. Conclusion 105

0

1

the girl

4

has 6

7

8

red hair

and eyebrows

, 14

15

several piercings

18

in 20

a ear

and 24

25

? tattoo

28

on 30

the back

(a) Input constituency trees.

0.0

0.5

1.0

Pr
ob

Infinite-Sum-LSTM on 3991

0.0

0.5

1.0

Pr
ob

Infinite-CP-LSTM on 3991

25 24 6 4 0
0.0

0.5

1.0

Pr
ob

Infinite-TT-LSTM on 3991

N E C

(b) Model prediction on different nodes.

Figure 5.3: Comparison between infinite neural models predictions
on the input #3991 taken from the SICK [113] test set.

recursive model on the sentence A (B). On node 25, all the models predict correctly
the contradiction. However, going up through the structure, the Infinite-Sum-LSTM
changes the prediction to entailment, which will be the final output on node 0. The
change of the output label starts at node 6, which is the node where most of the
information is aggregated; it seems that the Infinite-Sum-LSTM performs a sort of
average which softens the contribution of node 24 (the only one that instead should
be taken into account). On the contrary, Infinite-CP-LSTM and Infinite-TT-LSTM
propagate correctly the information through the structure. Even if there are sub-
phrases which are identical, their contributions do not influence the output. In fact,
observing Figure 5.3b, we can notice that the class predicted by Infinite-CP-LSTM
and Infinite-TT-LSTM is always “contradiction” in all nodes in the path between ?
and the root.

This example show that neural models benefit of state-transition functions which
are able to ignore child contributions, if it is necessary. The CP approximation provides
a straightforward mechanism to implements such behaviour thanks to the negation
property of the multiplicative operation (see Section 4.4.5).

5.4 Conclusion

In this chapter, we have proposed probabilistic and neural recursive models which are
able to learn form unbounded structured data. Such models rely on the combination
of tensor decompositions and weight sharing constraints.

The infinite models which leverage the infinite CP approximation define state-
transition functions which ignore the child nodes order. This inductive bias can be

106 Chapter 5. Tensor Models for Unbounded Structured Data

deduced by the relation between symmetric tensors and the infinite CP approximation.
Moreover, this relation ensure us that every symmetric tensor can be represented by
the infinite CP approximation.

On the other hand, the infinite models which leverage the infinite TT approximation
are able to define state-transition functions which exploit children order. This inductive
bias is intrinsic in the definition of TT decomposition since it define a sequential
processing of the child nodes. Moreover, thanks to the weight sharing constraint
imposed on the core tensors, such a sequential processing is transformed into a
recursive one. As far as we know, in this case there is no connection with any tensor
property. Indeed, the recursive processing resembles the definition of recursive models
for sequences.

Finally, we have assessed the performances of our infinite models in the NLP
domain. While the probabilistic models do not achieve satisfactory results, the
infinite neural models based on tensor decompositions outperform the models based
on summation on most of the tasks attempted. In particular, we have shown that
inductive bias of the CP approximation is useful on semantic textual similarity tasks.

107

Chapter 6

Unbounded Models for
Structured Data

6.1 Introduction

Finding the best hyper-parameters values for a ML model is a difficult challenge. This
aspect is extremely relevant in the context of recursive models which leverage tensor
decompositions. As we have extensively shown in Section 4, their ability to reduce
the model complexity depends on the decomposition rank value, which is a model
hyper-parameter.

A common technique to select hyper-parameter values is the cross-validation [22],
where different values are validated on a sub-set of the training data (i.e. the so-called
validation set). Then, the best performing value is selected. The drawback of this
process is the significant amount of resources required to train and validate multiple
configurations.

In this chapter, we study a different approach to select hyper-parameters values.
In particular, we aim to introduce two unbounded models for structured data which
adapt their complexity directly to the input data. The term unbounded refers to their
complexity which is not a priori determined by fixing some hype-parameters. Thus, it
is (theoretically) unbounded.

In Section 6.2, we propose a Bayesian Non-Parametric (BNP) [128] mixture
model to tackle unsupervised tasks on structured data. The term Non-Parametric
indicates that the model can rely on a theoretically infinite-dimensional parameter
space. Nevertheless, in practice, only a subset of such an infinite space is used. The
size of this subset is adapted the complexity of the input data. The term Bayesian
refers to the approach used to adapt the model complexity. The Bayesian framework
allows estimating this quantity by applying posterior inference. We experimentally
assess the proposed model on two clustering tasks on structured domains, showing
that mixture models are able to capture global structural properties. Moreover, we
assess the computational advantages introduced by using the BNP approach.

In Section 6.3, we propose a Bayesian extension of HOSVD-HRTM which is able
to learn the decomposition rank as well as its parameters from data. The underlying
idea is to define a prior distribution on the rank values to guide a random search.

108 Chapter 6. Unbounded Models for Structured Data

This searching strategy is integrated into the learning algorithm, obtaining a model
which adapts its complexity on the input data. We validate the effectiveness of the
Bayesian approach to learn the decomposition ranks on two different tasks.

6.2 Bayesian Mixture Model for Structured Data Clus-
tering

In the previous chapters, we mainly focus on recursive models in a supervised learning
setting where the objective is to produce a (possibly structured) output given the input
structure. While the recursive models can also be applied to unsupervised learning
tasks, the literature produced in this direction is limited. A notable exception is the
seminal paper on a general framework for the unsupervised processing of structured
data [80]. Within this class of models, the most relevant contributions are related to
the extension of topographic mapping models to handle structured data. This is the
case, for instance, of the SOM-SD model [76], extending Kohonen’s self-organising
maps to structured acyclic data. Extensions of generative topographic mapping to
structured data have instead been proposed by [64] and [13], based on top-down
and bottom-up approaches, respectively. Despite their unsupervised nature, such
models have seldom been used for structured data clustering. The point is that
these models are fundamentally solving a different problem than clustering, that is
finding a topographic mapping that preserves structural similarities. When applied
to clustering, e.g. in [75], the partitioning of samples into clusters is obtained only
as a post-processing step, through expert inspection of the projects obtained on the
topographic map.

In this section, we introduce a BNP mixture model designed to address the
structure clustering problem. Mixture models are generative approaches widely
applied in clustering applications for vector data, e.g. the Gaussian mixture model
and its evolutions. Here, we propose a mixture model built on the top of probabilistic
recursive models. In particular, we choose SP-HRTM as mixture component. Thanks
to a Bayesian approach based on Dirichlet processes, we empower the mixture model
to handle a theoretically infinite number of components [124]. As a part of its learning
procedure, it adapts the number of effectively used components to the complexity of
the data.

6.2.1 SP-HRTM for Unsupervised Learning

We have already detailed SP-HRTM in Section 3.3.1 as the first practical approximation
of HRTM introduced in the literature [11]. Nevertheless, it is worth to briefly summarise
its definition showing how it can be applied in the context of unsupervised learning
tasks.

Probabilistic models for structured transduction such as SP-HRTM define a
generative process for the output structure Y which is conditioned on the input

6.2. Bayesian Mixture Model for Structured Data Clustering 109

structure X , i.e. P (Y | X). However, in unsupervised tasks, the aim is to learn an
unconditioned distribution P (Y). Thus, the probabilistic models can be extended
to tackle unsupervised tasks by simply ignoring the input labels. More formally, we
should assume that all the input labels are always in a bottom state ⊥; thus, the model
defines the distribution P (Y | ⊥), where ⊥ is a structure with the same skeleton of
Y which has all the node labels equal to ⊥. Since the input label does not carry any
information, we can ignore it.

A formalisation of SP-HRTM without input labels has been already introduced
in [12]. Let Y be an observed structure, SP-HRTM defines the following generative
process:

L(Y | θ) =
∑
H
P (Y ,H | θ) =

∏
v∈vert(Y)
|ch(v)|=0

∑
hv

P l(hv | al)P (yv | hv,K)

×
∏

v∈vert(Y)
|ch(v)>0|

∑
hv

L∑
l=1

P (Sv | s)P (hv | hlv,U l)P (yv | hv,K)
(6.1)

where θ = {a1, . . . ,aL,K, s,U1, . . . ,UL} are the model parameters and H represents
the set of all the hidden variables. In the following, we briefly summarise each
parameter.

The vector al ∈ RC≥0 parametrises the leaf distribution P l(hv), where v is a leaf
node, l is its position and C is the number of hidden states.

The matrix K ∈ RC×K≥0 parametrises the output distribution P (yv | hv) which
generates the visible labels. We assume there are K possible output labels.

The parameters s and U1, . . . ,UL are related to the SP approximation of the
state-transition distribution. In particular, s ∈ RL≥0 parametrises the switching parent
variable Sv; U l ∈ RC×C≥0 parametrise the distribution P (hv | hvl) which regulates the
relation between the hidden state of v and the hidden state of its l-th child node. As
usual, L indicates the maximum structure out-degree.

6.2.2 Mixture of SP-HRTMs

A finite mixture model is able to approximate complex distributions through an
appropriate choice of its components to represent the local area of the truth distribution
[114]. Thus, we introduce a finite mixture model whose components are SP-HRTMs
to better represent complex distributions over labelled structures.

Model Definition

A finite mixture model is obtained by combining multiple generative models called
mixture components. The combination is obtained through a hidden random variable,
called mixture variable.

Since we are introducing a finite mixture model, the number of components is
fixed and it is represented by the hyper-parameter T . In our model, all mixture

110 Chapter 6. Unbounded Models for Structured Data

Tn

Yn

n = 1, . . . , Nt = t, . . . , T

p

θt

Figure 6.1: Graphical model of Mix-SP-HRTM, where black-point
nodes identify model parameters.

components are SP-HRTM without input labels (see Section 6.2.1), each of them
with different parameters θ = {θ1, . . . , θT }. To better understand how the mixture
of SP-HRTM (Mix-SP-HRTM) represents the data, it is useful to summarise the
underlying generative process for the n-th structure Yn:

Yn | tn,θ ∼ P (Yn | θtn)

tn | p ∼ Discrete(p1, . . . , pT).
(6.2)

The term tn indicates the latent class associated to the observed structure Yn, i.e. the
index of the mixture component used to generate the structure. Hence, θtn represents
the model parameters of the tn-th mixture component. The value P (Yn | θtn) is the
likelihood of Yn according to the tn-th component and it is modelled using a SP-HRTM
(see Eq. (6.1)). The latent class is drawn from a categorical distribution, which is the
distribution of the mixture variable. In Figure 6.1, we represent the graphical model
which describes this process: for the sake of clarity, the whole structure Yn is denoted
as a single variable.

Learning procedure

Learning Mix-SP-HRTM parameters has two objectives: the first one is to learn the
parameters of all the mixture components θ; the second one is to learn the mixing
distribution p. Both objectives can be reached through the EM algorithm (see Section
2.2.1).

In the E-step, we aim to compute the posterior distributions of all the hidden
variables given the visible ones. First, we should observe that two mixture components
are completely independent given the latent class: the only way to exchange information
among components is through the latent class. Hence, each conditional independence
assumption exploited to derive the E-step of in a single mixture component still
holds in the mixture model. Thus, we can rely on the SP-HRTM upward-downward
algorithm (see Appendix D) to compute the posteriors of the tn-th mixture component

6.2. Bayesian Mixture Model for Structured Data Clustering 111

P (Hn | Yn, tn, θtn), where the conditioning over the latent class tn is explicitly
introduced. This value still depends on a hidden variable, i.e. the latent class tn.
Nevertheless, by applying the chain rule, we write the posterior distribution as:

P (Hn, tn, | Yn) = P (Hn | tn,Yn)P (tn | Yn), (6.3)

where we omit the parameter θtn since it is implicit in the latent class.
The term P (tn | Yn) represents the posterior of the latent class, which can be

easily obtained as:
P (tn | Yn) = P (Yn | tn)P (tn)

P (Yn) , (6.4)

which completes the E-step definition, summarised in Algorithm 1. Note that the
value P (Yn | tn), i.e. the likelihood of the observed data according to the tn mixture
components, is computed during the upward pass of the upward-downward algorithm.

The M-step updates the component parameters θ: it is derived by the straightfor-
ward application of the formula used for a single SP-HRTM (see Appendix D) using
the posterior computed in Eq. (6.3). An additional rule to update the latent class
distribution p is also needed:

p[t] =
∑N
n=1 P (Tn = t | Yn)

N
. (6.5)

From the computational complexity point of view, the introduction of the mixture
increases the computational complexity in time to O(T × Tup-down), where Tup-down

is the time complexity of the upward-downward algorithm. The computational
complexity in space has the same behaviour: it becomes O(T ×SSP-HRTM +T), where
SSP-HRTM is the space required to store the parameters of a single SP-HRTM. The last
term T is the space required to store the mixing distribution, which can be neglected.

Algorithm 1 E-step for Mix-SP-HRTM
Require: A labelled structure Yn, T different SP-HRTM with parameters θ1 . . . θT and a

mixture distribution p.
for t=1 to T do

postH[t] = UP-DOWN(Yn, θt)
lk[t] = LIKELIHOOD(Yn, θt)
postP [t] = lk[t]× p[t]

end for
postP = NORMALISE(postP)
for t=1 to T do

postH[t] = postH[t]× postP [t]
end for
return (postH, postP)

6.2.3 Bayesian Non-parametric Mixture of SP-HRTM

Setting the correct number of components in a finite mixture model is not obvious
and a variety of techniques have been developed [114]. Our goal is to build a Bayesian

112 Chapter 6. Unbounded Models for Structured Data

Non-Parametric mixture of SP-HRTM (BNP-SP-HRTM), which allows an infinite
number of mixture components: in our case, each component is, again, a SP-HRTM
with different parameters. In the followings, we formally define BNP-SP-HRTM as
well as its learning algorithm.

Model Definition

The BNP extension of a finite mixture model relies on Dirichlet Processes (DPs) [56].
The generation of an observed structure Yn can be described as follows [124]:

Yn | ζn ∼ F (θn)

θn | G ∼ G

G ∼ DP (G0, γ).

(6.6)

The distribution F (θn) represents the mixture component (i.e. a SP-HRTM) with
parameters θn drawn from G, which is itself distributed according to a DP with
concentration parameter γ and base measure G0. The value G0 is the expected
value of the DP and it represents the prior distribution for the mixture component
parameters. For the sake of simplicity, we have ignored the dependency between the
function F and the mixture component parameters and the hyper-parameters for the
prior G0. These will be stated more in detail in the remainder of the section.

For our purposes, it is convenient to derive the unbounded model taking the limit
as T goes to infinity of a Mix-SP-HRTM with T components [124]. Before taking the
limit, we define explicitly the prior distributions of the Mix-SP-HRTM parameters
(i.e. the function G0). Since all the model parameters follow a categorical distribution,
we use the Dirichlet distribution as prior distributions since it is the conjugate prior
of the categorical distribution. Thus, we obtain:

Yn | tn,θ ∼ P (Yn | θtn)

tn | p ∼ Discrete(p1, . . . , pT)

al[:] ∼ Dirichlet(αa, . . . , αa),

U l[c, :] ∼ Dirichlet(αu, . . . , αu),

K[c, :] ∼ Dirichlet(αk, . . . , αk),

s ∼ Dirichlet(αs, . . . , αs)

p ∼ Dirichlet(γ/T, . . . , γ/T).

(6.7)

Since we are using a flat Dirichlet distribution, we have a single hyper-parameter
for each prior distribution. Hence, the model hyper-parameters are {αa, αu, αk, αs, γ}:
the α terms are related to the SP-HRTM priors (i.e. are parameters of G0) while the
γ term is the concentration parameter of the DP.

6.2. Bayesian Mixture Model for Structured Data Clustering 113

tn

Yn

n = 1, . . . , N

γ p

at
l

Kt

U t
l

st

αa

αk

αu

αs

t = 1, . . . ,∞

Figure 6.2: Graphical model of BNP-SP-HRTM.

Learning parameters

Computing the exact posterior expectation becomes unfeasible when the model
is extended with a DP prior, i.e. when T → ∞. However, such expectation can
be estimated using Monte Carlo methods [124]. In particular, a Gibbs sampling
algorithm can be applied to the model described in Eq. (6.7), integrating out the
mixing proportions p. The idea is to iteratively sample the latent class tn for each data
point and update the parameters θ for each mixture component, taking into account
only those data points assigned to each mixture. Even if there is an infinite number of
components, we are able to execute this algorithm since we deal only with the mixture
components that are currently associated with some observations. By definition, there
is only a finite number of observation and thus also the number of mixture components
must be finite. In the next sections, we denote by active components the mixture
components that are currently associated with at least one observation.

In the first step, the Gibbs sampler assigns a latent class to each structure Yn.
The latent class of Yn is sampled from a conditional distribution which considers (i)
the latent class associated to all the other structures and (ii) the likelihood of Yn

according to the mixture components [124]. Thus, we obtain:

P (t | t−n,Yn,θ) =

N−n,t
Z

P (Yn | θt) if N−n,t > 0
γ

Z

∫
P (Yn | θ)dG0(θ) otherwise

(6.8)

where N−n,t is the number of structures (except Yn) which are already assigned to
the t-th class. The value t−n indicates the latent class of all structures in the dataset
except Yn, while Z is a normalising constant to ensure that the above probability
sum to one.

Equation (6.8) states that the probability of assigning a class t to a structure is

114 Chapter 6. Unbounded Models for Structured Data

proportional to the number of structures that are already assigned to it (i.e. N−n,t).
Nevertheless, there is a non-zero probability of assigning the i-th structure to a new
component: unfortunately, we cannot consider explicitly all the other components
since there is an infinite number of them. The solution is to integrate over all the
possible mixture component parameters (i.e. all the possible mixture components).
The integral is taken over the function G0(θ) since it represents the prior for SP-HRTM
parameters. The integral can be solved analytically due to the conjugacy between
parameter distributions and their prior: the result is the likelihood of Yn according
to a SP-HRTM whose parameters are uniform distributions since we use flat Dirichlet
distributions as priors. When a new class is sampled, we must create a new mixture
component. The new parameters are sampled from the prior distribution G0(θ).
During the inference procedure, it can also happen that a latent class is no longer
assigned to any structures. From Equation (6.8), it follows there is a zero probability
to assign such class again. Hence, we can remove the corresponding latent class.

The second step of the inference procedure requires estimating new parameters
θ for all the existing mixture components. Each component updates its parameters
considering only the structures that are assigned to it during the first step. The
updates can be performed by applying the EM procedure for SP-HRTM on the subset
of the dataset assigned to each component. The only modification required is in the
M-step, which is extended to consider also the prior. Assuming that all the SP-HRTM
distribution are categorical distribution, we can consider the Dirichlet priors by simply
add α− 1 to each counting table. The whole Gibbs sampling method is summarised
in Algorithm 2.

Algorithm 2 Gibbs sampling method for BNP-SP-HRTM
Require: A dataset of labelled structure D̂ = {Y1, . . . ,YN}, a set of SP-HRTM parameters
θ = {θ1 . . . θT }, a random assignment t = {t1, . . . , tN}
Sj = {n | tn = j} ∀j ∈ {1, T}
repeat

for n = 1 to N do . Sample step
Stn = Stn \ {n}
if Stn = ∅ then . Remove tn
θ = θ \ {θtn}
T = T − 1

end if
tn = SAMPLING(t−n,Yn,θ) . Eq. (6.8)
if tn is new then . Create tn

θtn ∼ G0
θ = θ ∪ {θtn}
T = T + 1
Stn = ∅

end if
Stn = Stn ∪ {n}

end for
for t=1 to T do . Update step

θt = EM-SP-HRTM(θt, St, G0)
end for

until stopping criteria

6.2. Bayesian Mixture Model for Structured Data Clustering 115

Again the computational complexity (both in time and space) increases linearly
with respect to the number of active components T , when compared to the simple SP-
HRTM model. It is worth highlighting that, in this case, the value of T is dynamically
updated during the learning procedure.

6.2.4 Experimental results

To validate the proposed approaches, we empirically assess their ability to recognise
clusters in tree-structured data. Evaluating the clustering quality is not trivial and
multiple indexes have been defined [141]. In the following experiments, we use the
Silhouette index [143] to assess the clustering quality. The Silhouette index is an
internal measure and therefore it can be computed without any additional knowledge
on data (e.g. the true clustering). However, its computation requires the definition of
a suitable distance metric among data points. Here we compute the distance between
two trees using the Ruzicka distance [48] on their representative matrices. Let Zn be
the representative matrix for a tree Yn, its element zn[l, j] counts how many times
the label j appears in a node in the l-th position. Thus, given the representative
matrices for two trees Yn and Ym (i.e. Zn and Zm, respectively) the Ruzicka distance
is defined as:

dR(Yn,Ym) = 1−
∑
l

∑
j min(zn[l, j], zm[l, j])∑

l

∑
j max(zn[l, j], zm[l, j]) . (6.9)

Note that the Ruzicka distance defined does not take into account the topologies
of the Yn and Ym. Nevertheless, as it will be clearer in the next paragraphs, this
measure is able to capture some differences among structures that belong to different
clusters in the considered tasks.

Given the definition of a suitable distance measure, the Silhouette index of a given
tree Yn, is computed considering the distance between Yn and both elements that are
inside and outside its cluster; its value is always between −1 (worst clustering) and 1
(best clustering). Mathematically speaking, let Yn an element in the t-th cluster, the
Silhouette index is given by:

s(Yn) = b(Yn)− a(Yn)
max(a(Yn), b(Yn)) , (6.10)

where a(Yn) is the average distance of Yn and its cluster t, while b(Yn) is the minimum
distance between Yn and a cluster t′ 6= t. The distance between a tree Yn and a
cluster t is computed as the average distance between Yn and all trees Ym ∈ t. In
formula, assuming Yn ∈ t, we obtain:

a(Yn) = 1
|C|

∑
Ym∈C

dR(Yn,Ym), b(Yn) = min
C′ 6=C

1
|C ′|

∑
Ym′∈C′

dR(Yn,Ym′),

(6.11)
where dR(·, ·) is the Ruzicka distance defined in Eq. (6.9).

116 Chapter 6. Unbounded Models for Structured Data

We evaluate our model on two clustering tasks; the first is a controlled dataset
while the latter deals with real-world data. The MATLAB code implementing the
models and the experiments conducted can be found on a public GitLab repository.1

Synthetic dataset

The goal of the first experiment is to assess whether the mixture of hidden trees (both
finite and infinite) offers an advantage with respect to a single SP-HRTM in terms of
cluster identification. To this end, we test all models (SP-HRTM, Mix-SP-HRTM, and
BNP-SP-HRTM) on a synthetic clustering problem denoted as ASYMM. The ASYMM
dataset contains ternary trees (i.e. L=3), comprising left-asymmetric, symmetric and
right-asymmetric tree, hence defining three different clusters. A tree is defined as
left-asymmetric (right-asymmetric) if the number of nodes in the leftmost (rightmost)
position is greater than the number of nodes in the opposite position. In a symmetric
tree, the number of nodes is almost equivalent for each position.

The dataset is generated through a top-down recursive procedure: starting from
the root, child nodes are generated according to a distribution which indicates how
likely is to generate a node in each position. If new nodes are generated, the same
procedure is recursively applied until the whole tree is generated. The procedure ends
when a maximum number of nodes are generated. This scheme is used to obtain all
the three structure types: for each type, a proper distribution to generate child nodes
is used. The label of each node encodes structural information since it represents
the number of children: therefore the label goes from 0 (i.e. no child nodes) to 3 (i.e.
a child node in each position). Moreover, each tree type is generated by setting a
different maximum number of nodes in order to add another structural peculiarity.
In particular, left-asymmetric trees are the smallest one, while the right-asymmetric
are the biggest ones. Symmetric trees have a number of nodes which is between the
characteristic sizes of left and right imbalanced trees. Finally, we generate 780 trees
(260 for each type) and split them in training set (600 trees, 200 for each type) and
test set (180 trees, 60 for each type).

All models (SP-HRTM, Mix-SP-HRTM, and BNP-SP-HRTM) are trained in an
unsupervised setting, i.e. the true class is not available at training time. For each
model, different configurations are tested, changing the number of hidden states (i.e.
C), the number of mixtures (i.e. T), and the prior hyper-parameters. Thanks to a
preliminary analysis, we have noticed that some hyper-parameters of BNP-SP-HRTM
do not affect the solution too much. Therefore, to reduce the number of configurations
to test, we have used the same value for all the prior hyper-parameters (i.e. αp, αk,
αu, αs): we refer to this value with the letter α. Also, we have fixed the concentration
parameters γ = 10. For a fair comparison, each training algorithm is executed for a
maximum of 30 iterations.

1https://github.com/danielecastellana22/Mixture-HTMM

https://github.com/danielecastellana22/Mixture-HTMM

6.2. Bayesian Mixture Model for Structured Data Clustering 117

SP-HRTM C = 3 C = 5 C = 7

Root sampling 0.03 (0.00) −0.02 (0.03) −0.08 (0.02)

Mix-SP-HRTM T = 3 T = 5 T = 7

C = 2 0.41 (0.01) 0.43 (0.03) 0.46 (0.05)
C = 4 0.45 (0.05) 0.47 (0.08) 0.47 (0.05)
C = 6 0.46 (0.05) 0.45 (0.05) 0.47 (0.06)

BNP-SP-HRTM α = 1 α = 1.5 α = 2

C = 2 0.36 (0.23) 0.45 (0.08) 0.45 (0.07)
C = 4 0.43 (0.08) 0.51 (0.00) 0.51 (0.00)
C = 8 0.33 (0.00) 0.51 (0.00) 0.51 (0.00)

Table 6.1: Mean Silhouette index over 5 runs (std in brackets) on the
ASYMM dataset.

(a) SP-HRTM, C = 3. (b) BNP-SP-HRTM, C = 8 and α = 2.

Figure 6.3: Confusion matrices for the synthetic dataset using SP-
HRTM and BNP-SP-HRTM.

At test time, SP-HRTM assigns a class to each tree by sampling the posterior of the
root node while Mix-SP-HRTM samples the posterior of the mixture variable. BNP-
SP-HRTM cannot directly sample from the posterior since this would be intractable;
however, the Gibbs sampler introduced in Section 6.2.3 can be used to approximate
the latent class assignment (skipping the parameters optimisation step). During the
test phase, we limit to 10 the number of iterations of the Gibbs sampler.

In Table 6.1, we report the mean and standard deviation (in brackets) of the
Silhouette index for each configuration over five runs. The advantage obtained by
introducing a mixture is clear: the single SP-HRTM reaches the best performance of
0.03, which is far from the best one obtained from both Mix-SP-HRTM and BNP-SP-
HRTM. Instead, the performance obtained by both mixture models is closer to the
Silhouette index computed on the ground truth, that is 0.51. In Figure 6.3, we report
two confusion matrices, obtained using BNP-SP-HRTM and SP-HRTM to show the
benefits of mixture models.

The poor performance of the single SP-HRTM highlights that the posterior of
the root node does not contain much information on the characteristics of the whole

118 Chapter 6. Unbounded Models for Structured Data

structure. As we have already pointed out in Section 5.3.3, this behaviour is at-
tributable to the EM algorithm that is not constrained to store global information
about the input structure into the root hidden state. On the contrary, it merely
maximises the likelihood of the observed data. Nevertheless, introducing a mixture
model and sampling the mixture variable rather than the root hidden variable, we
obtain far better results. The mixture variable contains by definition information
about the whole input structure since its state encodes the structure class. Thanks
to the generative process defined by the mixture model (see Section 6.2.2), the EM
algorithm benefits (in terms of higher likelihood) learning solutions which are able
to store global information in the mixture variable state. In other words, the EM
algorithm prefer solutions which cluster the input data.

Even if the best results obtained by Mix-SP-HRTM and BNP-SP-HRTM are
similar, there are some key differences. First, we should notice that the infinite model
reaches the best performance with zero standard deviation, i.e. the model performed
the same in each run. Also, Mix-SP-HRTM performs better when there are more
components than the real number of clusters: most of them are not used by the model.
On the other hand, BNP-SP-HRTM is able to find the true number of clusters. In
Figure 6.4, we plot the mean (and standard deviation) number of components during
the training for two different configurations of BNP-SP-HRTM. In the first iterations,
the model explores the solution space creating a high number of components (with
different parameters); then, the model starts adapting the best components to the data,
throwing away unused ones. After a few iterations, it reaches a total of 3 component,
which is the actual number of clusters. The plot also shows a different behaviour
between the two configurations: this aspect is examined in depth in Section 6.2.4.

This behaviour also affects the time required for both training and testing since
the time complexity for both mixture models depends linearly on the number of
components: hence, unused mixture components slow down the inference procedure.
In Figure 6.5, we show the training time required by both mixture models on the
synthetic dataset. For fairness, both training algorithms are executed without model-
specific code optimisation. The plot confirms our initial intuition: during the first
iterations, BNP-SP-HRTM is slower than Mix-SP-HRTM due to the high number of
active components. However, after few iterations, BNP-SP-HRTM becomes faster as
the Mix-SP-HRTM with three components. According to the results in Table 6.1, Mix-
SP-HRTM and BNP-SP-HRTM perform better when the respective hyper-parameters
are set to T = 7 and α = 2: comparing their training time in Figure 6.5, the benefit
of the Bayesian non-parametric extension is clear.

Real-world dataset

Previous experiments show the ability of both Mix-SP-HRTM and BNP-SP-HRTM to
cluster labelled trees in a completely unsupervised fashion. The goal of this experiment
is to assess the clustering performance of Mix-SP-HRTM and BNP-SP-HRTM on a

6.2. Bayesian Mixture Model for Structured Data Clustering 119

(a) C = 8 and α = 2. (b) C = 4 and α = 1.5.

Figure 6.4: Number of active components during the training (aver-
aged over 5 runs) for two different configurations of BNP-SP-HRTM

on the synthetic dataset.

Figure 6.5: Time spent for a single training iteration by Mix-SP-
HRTM and the BNP-SP-HRTM. Solid lines denote Mix-SP-HRTM
results for different T choices. Dashed lines refer to BNP-SP-HRTM
under different choices for the α hyper-parameter. For the sake of

clarity, the number of hidden states is fixed to 4 in both models.

120 Chapter 6. Unbounded Models for Structured Data

real-world dataset. Due to the poor performances obtained in the previous experiment,
we do not evaluate SP-HRTM.

We choose a dataset taken from the INEX 2005 competition [46]. It is based on
the (m-db-s-0) corpus, comprising 9631 XML-formatted documents represented as
trees with maximum output degree L = 32 and labelled by 11 thematic categories,
which represents the different clusters. Node labels represent XML tags: there are
366 possible labels. The dataset is split in training set (4820 trees) and test set (4811
trees) [46].

Again, we test multiple configurations for each model. In particular, in Mix-
SP-HRTM, we vary the number of hidden states C ∈ [2, 4, 8] and the number of
mixture component T ∈ [6, 11, 22]. In BNP-SP-HRTM, we vary the number of hidden
states C ∈ [2, 4, 8] and the hyper-parameter of the SP-HRTM prior α ∈ [1, 1.2, 1.5, 2].
As in the previous experiment, we fix the value of the concentration parameter, i.e.
γ = 10. Each configuration is trained for a maximum of 30 iterations, while the
BNP-SP-HRTM test procedure is executed for a maximum of 10 iterations.

In Table 6.2, we report the mean and standard deviation (in brackets) of the
Silhouette index computed, for each configuration, over five training-test runs. The
advantage of the infinite model is not clear, even if it reaches the best performance
on the INEX2005 dataset. Rather than comparing only the performance results, it is
interesting to compare the resulting clusters produced by each model to obtain such a
performance. In Figure 6.6, we report clusters obtained using the best configuration of
both models. The plot shows how trees in each true class (on the y-axis) are distributed
with respect to the model-predicted clusters (on the x-axis). The clustering obtained
using Mix-SP-HRTM (see Figure 6.6a) is made up of only 4 active clusters (even if
there are 22 components): the first cluster contains all trees with ground-truth class
labels {1, 2, 3}, the second cluster contains all trees with labels {4, 5}, the third cluster
contains all trees with labels {6, 8, 10, 11} and the last one contains all trees with
labels {7, 9}. The clustering obtained using the BNP-SP-HRTM (see Figure 6.6b)
are almost the same, but there are two main differences. The first one is the number
of clusters used, that is only 6 since the components with no data are thrown away
during the training, thus reducing their impact on computational complexity. The
second difference is that the model creates two new clusters to contain trees with
ground-truth label 1: even if the model creates a spurious cluster, it is able to learn
the difference between trees from category 1 and trees from all other categories.

The clustering produced by both models exploit the structural and label information
contained in INEX2005 trees. In Figure 6.7, we report a similarity measure between
categories in the INEX2005 training set. The similarity between two categories t′

and t′′ is computed taking the mean of the Ruzicka similarity (see Eq. (6.9)) between
all the t′ trees and all the t′′ trees. The plot shows clearly that categories with high
similarity are the ones that are clustered together by our models.

6.2. Bayesian Mixture Model for Structured Data Clustering 121

Mix-SP-HRTM T = 6 T = 11 T = 22

C = 2 0.12 (0.01) 0.13 (0.07) 0.20 (0.04)
C = 4 0.13 (0.09) 0.17 (0.02) 0.15 (0.02)
C = 8 0.08 (0.00) 0.11 (0.05) 0.17 (0.06)

BNP-SP-HRTM α = 1 α = 1.2 α = 1.5 α = 2

C = 2 0.15 (0.02) 0.15 (0.05) 0.19 (0.02) 0.21 (0.04)
C = 4 0.07 (0.04) 0.20 (0.04) 0.16 (0.07) 0.18 (0.03)
C = 8 0.05 (0.10) 0.15 (0.05) 0.13 (0.02) 0.15 (0.06)

Table 6.2: Mean Silhouette index over 5 runs (std in brackets) on the
INEX05 dataset. In bold the best result for each model.

(a) Mix-SP-HRTM, C = 2 and T = 22. (b) BNP-SP-HRTM, C = 2 and α = 2.

Figure 6.6: Clustering obtained by Mix-SP-HRTM and BNP-SP-
HRTM using the best (model selected) configuration on the INEX05

dataset.

Figure 6.7: Ruzicka similarity between categories on the INEX2005
training set. Blue colours denote low similarity while yellow indicates

a high similarity.

122 Chapter 6. Unbounded Models for Structured Data

Mix-SP-HRTM T = 6 T = 11 T = 22

C = 2 1.60 (0.55) 2.00 (0.71) 3.40 (0.55)
C = 4 2.00 (1.00) 2.20 (0.84) 1.80 (0.45)
C = 8 1.20 (0.45) 2.00 (0.00) 2.80 (0.45)

BNP-SP-HRTM α = 1 α = 1.2 α = 1.5 α = 2

C = 2 44.20 (14.79) 33.00 (13.69) 8.80 (3.11) 4.60 (1.95)
C = 4 23.80 (26.36) 11.60 (4.83) 3.20 (1.30) 2.40 (1.67)
C = 8 45.80 (35.81) 5.80 (3.03) 2.40 (0.55) 1.80 (0.84)

Table 6.3: Mean number of non-empty clusters over 5 runs (std in
brackets) on INEX05 dataset.

The importance of hyper-parameters

The experiments reported so far highlight how important is choosing the right value
of hyper-parameters in order to obtain satisfactory results using both mixture models.
In this section, we analyse the results obtained on INEX05 to emphasise the effects
of each hyper-parameter. In particular, we study the effect of the hyper-parameters
on the number of clusters discovered by the models. In Table 6.3, we report the
mean and standard deviation of the number of clusters for each Mix-SP-HRTM and
BNP-SP-HRTM configuration over 5 runs.

Mix-SP-HRTM is characterised by two hyper-parameters: the number of hidden
states C and the number of mixture components T . By increasing the number of hidden
states, we obtain more expressive SP-HRTMs as mixture components. Therefore, with
higher values of C, the model tends to use fewer components since each component
can be expressive enough to represent different clusters. The number of components
T indicates how many SP-HRTM components are used by the model. By taking
a deeper look at the results in Table 6.2, it is clear that increasing the number of
components helps to obtain better performances. However, even if a high number of
components is selected, the number of clusters being identified is always small (see
Table 6.3). We argue that increasing the value of T allows more exploration in the
solution space: each component has a random configuration that can be suitable or
not to describe the data. By creating more components, it is more likely to guess a
better initialisation. In Figure 6.8a, we plot the average number of clusters over 5
runs for each Mix-SP-HRTM configuration. Observing the plot, it is clear that higher
values of T lead to higher numbers of active clusters. It is also visible the influence of
C: the configuration with C = 2 has more active components than the configuration
with C = 8.

While the complexity of BNP-SP-HRTM model is also controlled by the number
of hidden states C, there is no hyper-parameter explicitly determining the number
of mixture components. However, this is strictly correlated to the choice of the α
values. In fact, α determines how strong is our prior belief on SP-HRTM parameters: a
stronger belief means that components will not adapt to the data too much (preventing
over-fitting), while weaker beliefs lead to a completely data-driven solution. Hence,
higher values of α tend to create solutions with fewer clusters, while a small value

6.2. Bayesian Mixture Model for Structured Data Clustering 123

(a) Mix-SP-HRTM (b) BNP-SP-HRTM

Figure 6.8: Number of active components as a function of hyper-
parameters for both mixture models on INEX05.

(a) C = 2. (b) C = 4. (c) C = 8.

Figure 6.9: Best clusters obtained using BNP-SP-HRTM with differ-
ent values of C on INEX05 dataset.

has the opposite effects. The value of the hyper-parameters C has the same influence
described before on Mix-SP-HRTM. In Figure 6.8b, we plot the average number of
active components for each BNP-SP-HRTM configuration, averaged on 5 runs. The
effect of the choice of α is evident: the number of active components reduces from
more than 20 to around 5, independently of the value of C. The effect of the choice of
C is also clear: the number of components obtained with C = 2 is greater than the one
obtained with C = 4, which is greater than the one obtained with C = 8. Furthermore,
the influence of C is evident when reporting the best clustering obtained for each
C value (see Figure 6.9): selecting C = 8, all trees in the first five categories are
merged together. On the other hand, by selecting C = 2, we do not have a SP-HRTM
expressive enough to represent trees in the first category: hence, the model uses two
components to represent them.

124 Chapter 6. Unbounded Models for Structured Data

6.3 Bayesian HOSVD for Structured Data Labelling

The application of tensor decompositions to build new powerful recursive models has
been already discussed in Chapter 4. In these models, the decomposition rank is a
hyper-parameter which regulates the trade-off between the model complexity and the
model expressiveness. Thus, selecting a proper rank value is a key designing choice
to obtain models which achieve the desired performances. To this end, we propose
a Bayesian extension of HOSVD-HRTM which is able to learn decomposition ranks
during the training procedure. We refer to this model as Bayesian-HOSVD-HRTM.

Bayesian approaches have been already combined with tensor decompositions to
perform multi-way data analysis, e.g. [35, 157, 86, 69]. The prior distributions are
usually imposed on the decomposition factors and they can be used to prefer low-rank
solution. For example, in [180], the authors impose a sparse prior distribution over
CP factor matrices to control the rank of the decomposition.

In this section, we adopt a different approach. In fact, rather than imposing a spe-
cific property on the factors prior distribution, we explicitly model the decomposition
rank as a random variable whose value is learned from data. This approach has been
introduced in [176] to perform high-dimensional classification tasks. Also, it has been
applied to approximate higher-order Markov chain [146] and higher-order HMM [145].

Finally, it is worth mentioning two BNP tensor decomposition which allows
an infinite value of the rank. In [135], the authors propose a BNP model for the
collaborative filtering task. The underlying idea is to apply a Dirichlet process for
each class of items (i.e. mode of the tensor) to cluster its values; then, the interactions
among items is modelled taking into account only the clusters they belong to. Similarly,
in [175] propose a BNP tensor factorisation based on the Gaussian process. In this
case, the unboundness is obtained by applying a (possibly infinite) feature map to the
latent factors.

6.3.1 Bayesian HOSVD Model

While Bayesian-HOSVD-HRTM is a Bayesian extension of HOSVD-HRTM proposed in
Section 4.2.3, they have a slightly different parametrisation. For the sake of simplicity,
in the Bayesian formalisation, we ignore the input labels.

Thus, Bayesian-HOSVD-HRTM define the following distributions:

• the distribution P l(hv | pl), where l = pos(v) indicates the position of the node
v with respect to its siblings. The prior distribution is parametrised by the
vector pl ∈ RC≥0, for each position l ∈ [1, L];

• the distribution P (rvl | hvl,U l), where U l ∈ R(C+1)×R̈l

≥0 is the mode matrix of
the HOSVD approximation associated to the l-th dimension;

• the distribution P (hv | rv1, . . . , rvL,G), where G ∈ RR̈1×···×R̈L×C
≥0 is the core

tensor of the HOSVD approximation. Note that in this formulation we have

6.3. Bayesian HOSVD for Structured Data Labelling 125

collapsed the core tensor and the mode matrix associate to the last dimension
in a single distribution;

• the emission distribution P (yv | hv,K). Since we assume discrete output labels,
it is a categorical distribution parametrised by the matrix K ∈ RC×K≥0 .

The values r = {R̈1, . . . , R̈L} represent the decomposition rank along the first L
dimension and they determine the size of the core tensor G. From a probabilistic
point of view, these quantities determines the number of states of the rank variables
Rv1, . . . , RvL. As we have shown in Section 4.2.3, each state of the l-th rank variable
can be interpreted as a cluster of the hidden states of the l-th child node. Thus, the
value R̈l measures how strong is the dependence between the hidden state Hvl and
its hidden parent state Hv. A value of R̈l = C, means that it is important to know
the exact child state Hvl in order to determine the parent state. On the contrary, if
R̈l = 1, the child state does not affect the parent one: no matter the true value of
Hvl, it will collapse in the unique state available for Rvl.

The Bayesian nature of the model arises considering each parameter as a random
variable which follows a suitable prior distribution. Since all the parameters are
categorical distributions, it is natural to define the priors using their conjugate
distribution: the Dirichlet distribution. Thus, the prior distribution of G is defined as
[145]:

G[rv1, . . . , rvL, :] ∼ Dirichlet(αλ0) (6.12)

λ0 ∼ Dirichlet(α0/C, . . . , α0/C), (6.13)

where the value α and α0 are hyper-parameters which regulate the shape of the
categorical distributions in G.

On the same line, we also specify a prior distribution for the other parameters:

pl ∼ Dirichlet(γ + nl,1, . . . , γ + nl,C) (6.14)

K[c, :] ∼ Dirichlet(β + nc,1, . . . , β + nc,K), (6.15)

(6.16)

where the value γ and β are hyper-parameters which regulate the shape of P l(hv | pl)
and P (yv | hv,K), respectively.

The core of Bayesian-HOSVD-HRTM is its ability to estimate rank values r during
the learning procedure. To this end, it also considers rank values as realisations
of random variables. The distributions of such variables are very important since
they force the model to focus either on compression (i.e. most of the values in r
are 1) or data representation (i.e. most of the values in r are C). Moreover, we can
easily insert prior knowledge selecting appropriate distributions: for example, we can
build distributions to introduce our prior belief that there are children positions more
informative than others.

126 Chapter 6. Unbounded Models for Structured Data

We decide to use the following position-independent prior:

P (R̈l) = e−ϕR̈l , (6.17)
L∑
l=1

I[R̈l 6= 1] ∈ [Lmin, Lmax]. (6.18)

The value ϕ is a hyper-parameter which regulates the distribution decay. The hyper-
parameters Lmin and Lmax denote the minimum and the maximum number of impor-
tant positions, respectively. The utility of Lmin and Lmax is twofold: (1) we can avoid
that the parent hidden state is completely independent of all the child hidden states
(by setting Lmin ≥ 1), and (2) we can control the worst case space-complexity (which
is O(CLmax+1)).

By varying the value of R̈l, we change the dimension of the core tensor G. In fact,
when a rank value increases, we increase the number of states of the corresponding
rank variable. Thus, we have to define new categorical distributions which regulate the
relations between the new rank variable state and the parent hidden state. Thanks to
the Bayesian formulation, these new categorical distributions are obtained by sampling
from the G prior distribution.

6.3.2 Parameters Learning and Rank Estimation

Our goal is to develop a learning algorithm which is able to learn the rank values
in r along with the model parameters. Unfortunately, this estimation worsens the
learning problem. To this end, we introduce an approximation on the mode matrices
U1, . . . ,UL. The approximation consists in adding the constraint Ũ l[j, r] = {0, 1}
to each entry of the mode matrices [145]. This new constraint makes the clustering
performed by mode matrices deterministic. In fact, we can associate each state
to a single cluster and define each cluster as Crl = {j | Ũ l[j, r] = 1}. Thus, the
approximated mode matrices Ũ l performs a hard clustering.

The approximation above allows us to develop a Gibbs sampling algorithm for
fitting the unknown quantities from data. For the sake of simplicity, we discuss the
learning algorithm assuming that the training set contains only one structure Y . The
extension to a generic i.i.d. training set is straightforward. The procedure comprises
the following steps [177]:

1. update all hidden states variables H and all rank variables R;

2. update the approximation size r and the mode matrices Ũ1, . . . , ŨL;

3. update the model parameters θ = {pl,G,λ0,K}.

In the first step, we perform a Simulated Annealing [96] update of the latent
variables. Given the current values of (H,R, r, θ), we compute the new values of
H′,R′ through an ancestor sampling procedure [17] starting from the leaf nodes. In
particular, we sample the new H′ fixing the old values R. Then, we use H′ to sample

6.3. Bayesian HOSVD for Structured Data Labelling 127

Algorithm 3 Sample latent states H′,R′

1: for all v ∈ vert(Y) do . Iterate over nodes following topological order
2: if |ch(v)| = 0 then . Sample leaf nodes hidden state
3: h′v ∼ pl, where l = pos(v)
4: else . Sample internal nodes hidden state
5: for l = 1 to L do . Sample rank variables
6: r′vl ∼ Ũ l[h′vl, :] . h′vl = ⊥ if the child does not exist
7: end for
8: h′v ∼ G[r′v1, . . . , r

′
vL, :]

9: end if
10: end for

the new values R′. More details are given in Algorithm 3. The new values H′,R′ are
accepted with the following probability [145]:

min
{[∏

vG[r′v1, . . . , r
′
vL, h

′
v]∏

vG[rv1, . . . , rvL, hv]

∏
vG[r′v1, . . . , r

′
vL, hv]∏

vG[rv1, . . . , rvL, h′v]

]1/T (m)
, 1
}
, (6.19)

where T (0) and T (m) = max{T 1−m/m0
0 , 1} denotes the initial and the current an-

nealing temperature, respectively; m is the current iteration number and m0 is the
iteration at which the temperature reduces to one.

In the second step, we perform a Stochastic Search for Variable Selection [63] to
update rank values. The vector r is updated choosing a random position l. Then,
we decide to do an increase (or decrease) move on the position l by a coin toss. The
increasing move consists in adding a new cluster for the l position. Hence, we randomly
select a cluster Crl and we randomly split it into two clusters. The splitting process
consists in randomly select a set of element in the cluster Crl and to move them in
the new cluster Cr′l . In practice, it is implemented modifying the hard clustering
Ũ l: for every state c which is moving from cluster r to cluster r′, we set Ũ l[c, r] = 0
and Ũ l[c, r′] = 1. On the contrary, the decrease move merges together two randomly
selected clusters Crl and Cr′l . Again, the merging operation is implemented modifying
the hard clustering Ũ l: for every state c in the cluster r′, we set Ũ l[c, r′] = 0 and
Ũ l[c, r] = 1.

Finally, we should guarantee that the constraint Eq. (6.18) is satisfied: Algorithm 4
provides more details on the process. The new values r′ are accepted with probability
[145]:

min

[
L(r′)
L(r)

∏L
l=1 P (R̈′l)∏L
l=1 P (R̈l)

]1/T (m)

, 1

 , (6.20)

where T (m) is the current annealing temperature which is computed as in the previous
step. The prior P (R̈l) is defined in Eq. (6.17), while the marginal likelihood is given
by [145]:

L(r) =
∏

(r1,...,rL)

B(αλ0[1] + nr1,...,rL,1, . . . , αλ0[C] + nr1,...,rL,C)
B(αλ0[1], . . . , αλ0[C]) , (6.21)

128 Chapter 6. Unbounded Models for Structured Data

Algorithm 4 Sample size vector r
1: l ∼ Uniform(L) . Choose the position
2: v ∼ Uniform(2) . Random move. 1 increase, 2 decrease
3: if R̈l = 1 then . Must do increase move
4: v = 1
5: end if
6: if R̈l = C then . Must do decrease move
7: v = 2
8: end if
9: if v = 1 then . Do increase move

10: R̈l = R̈l + 1
11: Randomly split a random cluster, modifying Ũ l

12: else . Do decrease move
13: R̈l = R̈l − 1
14: Merge two random clusters, modifying Ũ l

15: end if
16: if

∑L
p=1 I[R̈p 6= 1] > Lmax then . Check constraints

17: Randomly select a position l′ s.t. R̈l′ > 1
18: Do the decrease move on position l′
19: if

∑L
p=1 I[R̈p 6= 1] > Lmax then

20: Remove the increase move on l
21: end if
22: end if
23: if

∑L
p=1 I[R̈p 6= 1] < Lmin then . Check constraints

24: Randomly select a position l′ s.t. R̈l′ = 1
25: Do the increase move on position l′
26: end if

where the function B(·) represents the multivariate Beta function and the value
Nr1,...,rL,c counts how many times the joint configuration (Rv1 = r1, . . . , RvL =
rL, Hv = c) appears in the input structure.

In the last step, we update the model parameters sampling from their posteriors:

pl ∼ Dirichlet(γ +Nl,1, . . . , γ +Nl,C) (6.22)

K[c, :] ∼ Dirichlet(β +Nc,1, . . . , β +Nc,K) (6.23)

G[c1, . . . , cL, :] ∼ Dirichlet(αλ0[1] +Nr1,...,rL,1, . . . , αλ0[C] +Nr1,...,rL,C), (6.24)

where Nl,c =
∑

ch(v)=∅ I[Hv = c ∧ pos(v) = l] and Nc,k =
∑
v I[Hv = c ∧ Yv = k]. The

sampling of the base distribution λ0 requires a more complex procedure which is
outlined in Algorithm 5.

6.3.3 Experimental Analysis

We evaluate the proposed Bayesian model on two different tasks: a classification task
on XML tree-data and a labelling task on a synthetic dataset. In both tasks, we
use two measures to evaluate the model performance: the accuracy, which assess
the correctness of model’s answers, and the entropy, which measures the amount
of uncertainty in them. For the accuracy measures, higher values are better; for

6.3. Bayesian HOSVD for Structured Data Labelling 129

Algorithm 5 Sample vector λ0

1: for all (r1, . . . , rL, c) do
2: for p = 1 to nr1,...,rL,c do
3: t[p] ∼ Bernoulli

(
αλ0[c]

p−1+αλ0[c]

)
4: end for
5: mr1,...,rL [c] =

∑
p t[p], ∀c ∈ {1, C}

6: end for
7: m0[c] =

∑
r1,...,rL

mr1,...,rL [c], ∀c ∈ {1, C}
8: λ0 ∼ Dir(α0/C, · · ·+m0[1], α0/C +m0[C])

the entropy, lower values are better. All the reported results are averaged over five
executions, to account for randomisation effects due to initialisation.

The MATLAB code implementing the models and the experiments conducted can
be found on a public repository.2

Classification Task

The classification task consists in predicting the class a tree-structured sample belongs
to. We test both the SP-HRTM and Bayesian-HOSVD-HRTM on two datasets taken
from the INEX 2005 (INEX05) and INEX 2006 (INEX06) competition [46]. The
INEX05 dataset has been already introduced in Section 6.2.4. It contains 9631 XML-
formatted documents represented as trees with maximum output degree L = 32 and
assigned to 11 different cluster. Node labels represent 366 different XML tags. The
dataset is split in training set (4820 trees) and test set (4811 trees) [46]. The INEX06
is composed of 12107 XML-formatted documents representing scientific articles, each
from one of 18 different IEEE journals which represent the different cluster. Again,
the node labels represent different 65 XML tags and maximum output degree L = 66.
The dataset is split in training set (6053 trees) and test set (6054 trees) [46].

On both datasets, we train a single model for each class. Each model is trained on
the elements in the training set associated with the same model class; at test time,
we compute the likelihood according to each model and we assign the class of the
model which scores the highest sample likelihood. This setting is very similar to the
unsupervised approach proposed in Section 6.2; nevertheless, in this case, the clusters
are explicitly defined by the output classes. In this way, we avoid determining the
class of the whole structure on the root posterior.

For all the models, we set a flat prior on model parameters. Also, we set ϕ = 2
(as in [145]), Lmin = 1, and Lmax = 5 for the Bayesian-HOSVD-HRTM. The values
assigned to Lmin and Lmax allow to bound the space complexity of the model to
O(C6).

To evaluate the impact of the hidden state size, we vary the number of hidden
states C ∈ {2, 4, 6, 8, 10}. Both training algorithms are executed for 100 iterations.

2https://github.com/danielecastellana22/HOSVD-HTMM

https://github.com/danielecastellana22/HOSVD-HTMM

130 Chapter 6. Unbounded Models for Structured Data

Accuracy (%) Entropy (%)

SP-HRTM Bayesian-HOSVD-HRTM SP-HRTM Bayesian-HOSVD-HRTM

IN
E
X
05

C = 2 87.55 (4.13) 91.41 (3.62) 34.19 (5.80) 31.99 (10.37)
C = 4 90.68 (5.70) 93.65 (1.64) 28.92 (5.16) 25.00 (4.13)
C = 6 93.81 (1.15) 95.10 (0.27) 24.30 (2.90) 20.91 (0.93)
C = 8 93.15 (1.69) 94.28 (2.27) 23.59 (1.29) 23.12 (6.35)
C = 10 93.30 (3.09) 95.21 (0.17) 21.77 (1.64) 20.60 (0.46)

IN
E
X
06

C = 2 21.44 (4.54) 27.94 (2.62) 287.40 (7.24) 275.28 (2.07)
C = 4 24.84 (3.15) 29.83 (3.06) 281.23 (3.46) 279.82 (7.11)
C = 6 25.57 (2.12) 30.65 (2.36) 277.99 (2.81) 283.47 (5.34)
C = 8 26.43 (2.47) 26.48 (2.84) 278.17 (1.12) 292.36 (5.56)
C = 10 22.89 (3.33) 26.94 (2.77) 289.40 (6.28) 291.03 (7.12)

Table 6.4: Average accuracy and entropy over 5 runs (std in brackets)
on INEX05 and INEX06 dataset.

In Table 6.4, we report the accuracy and the entropy obtained on the test set. The
results show that the Bayesian-HOSVD-HRTM always outperforms the SP-HRTM,
both in accuracy and in entropy: the difference is higher when the number of hidden
states is small. These results are quite surprising if we consider that the Bayesian-
HOSVD-HRTM considers at most 5 child nodes among 32 (we set Lmax = 5); on the
contrary, the SP-HRTM always considers the contribution of all child nodes. Hence, we
deduce that not all the child nodes contain useful information for the tree-classification
and therefore can be ignored.

The results obtained on the INEX06 dataset (see Table 6.4) are similar to the
ones obtained on the INEX05 dataset: the Bayesian-HOSVD-HRTM always reaches a
higher accuracy than the SP-HRTM. On the contrary, the entropy values are high for
both models due to the intrinsic difficulty of the INEX06 dataset [12].

Labelling Task

The labelling task consists in predicting the visible labels associated with the nodes of
a given tree structure. We test both the SP-HRTM and the Bayesian-HOSVD-HRTM
on the controlled dataset ASYMM which we have already introduced in Section 6.2.4.
The ASYMM dataset contains ternary trees (i.e. L=3), comprising left-asymmetric,
symmetric and right-asymmetric tree, where the label of each node encodes structural
information since it represents the number of children: therefore the label goes from 0
(i.e. no child nodes) to 3 (i.e. a child node in each position).

We train a SP-HRTM and a Bayesian-HOSVD-HRTM with C = 10 hidden states.
In these experiments, we do not test multiple hyper-parameters configurations: for
both models, we use flat priors to generate the initial probability distribution. Also,
we set ϕ = 2 (as in [145]), Lmin = 1, and Lmax = 3 for the Bayesian-HOSVD-HRTM.
The values assigned to Lmin and Lmax allow to consider all the child positions. Both
training algorithms are executed for 100 iteration. At test time, both models generate
the output labels given an input structure without labels. In Table 6.5, we report the
accuracy and the entropy obtained by both models for each output label.

6.3. Bayesian HOSVD for Structured Data Labelling 131

Accuracy (%) Entropy (%)

SP-HRTM Bayesian-HOSVD-HRTM SP-HRTM Bayesian-HOSVD-HRTM

0 55.47 (12.90) 99.67 (0.11) 35.49 (8.25) 1.34 (2.03)
1 60.15 (2.22) 79.59 (22.35) 151.51 (13.14) 65.61 (61.25)
2 45.84 (4.43) 64.71 (27.17) 180.88 (5.40) 93.69 (51.19)
3 17.04 (2.05) 29.68 (38.22) 184.08 (4.93) 97.71 (44.38)
All 53.08 (4.83) 80.68 (15.77) 140.38 (10.39) 51.42 (34.91)

Table 6.5: Average label accuracy over 5 runs (std in brackets) on
the synthetic dataset.

(a) Labels generated by the SP-HRTM. (b) Labels generated by the Bayesian-HOSVD-
HRTM.

Figure 6.10: An example of tree label generation on the synthetic
dataset by the SP-HRTM and the best Bayesian-HOSVD-HRTM exe-

cution. Red nodes have wrong label.

The overall accuracy reached by SP-HRTM and Bayesian-HOSVD-HRTM is 53.08%
and 80.68% respectively, showing the effectiveness of the approximation introduced.
Moreover, the results show that Bayesian-HOSVD-HRTM is able to learn a suitable
value of the rank along each dimension to solve the task.

If we observe the accuracy results obtained on each label, the greatest improvement
is obtained on label 0. Even if the prediction of the label 0 should be the easiest one
(it appears only on leaf nodes), the accuracy obtained by SP-HRTM is only around
55% while the accuracy of Bayesian-HOSVD-HRTM is around 99%. The high entropy
value suggests that SP-HRTM attaches the 0 label also to internal nodes (see Figure
6.10a).

In Figure 6.11, we report the confusion matrix obtained by the best SP-HRTM
and the best Bayesian-HOSVD-HRTM. The best Bayesian-HOSVD-HRTM reaches an
accuracy of 99.1%, while the best SP-HRTM reaches only an accuracy of 57.5%. This
huge difference is due to the SP approximation that mixes together the contributions
from child nodes. On the contrary, the Bayesian-HOSVD-HRTM is able to distinguish
the contribution of each child due to the core tensor G which models all the possible

132 Chapter 6. Unbounded Models for Structured Data

(a) SP-HRTM confusion matrix. (b) Bayesian-HOSVD-HRTM confusion ma-
trix.

Figure 6.11: Confusion matrices obtained by the SP-HRTM and the
best Bayesian-HOSVD-HRTM execution.

joint configurations of the rank variables on child nodes. This is in line with the
results obtained in Section 4.4.

Nevertheless, there is a consistent difference between the accuracy obtained by the
best Bayesian-HOSVD-HRTM model and the results obtained averaging Bayesian-
HOSVD-HRTM over 5 runs. This is confirmed by the high standard deviation reported
in Table 6.5. We believe that the high variance in the results is due to the strong
dependence between the first two steps of the learning algorithm.

6.4 Conclusion

In this chapter, we have introduced two unbounded models for structured data that
adapt their complexity directly to data.

The first unbounded model introduced is a Bayesian Non-Parametric (BNP)
mixture of SP-HRTMs for structured data clustering. Such a model addresses the
problem of setting the number of mixture components a priori by allowing an infinite
number of them. Nevertheless, only a finite set of components is actually used during
training, while the learning procedure can create (or remove) components on the
fly. This worsens the learning procedure which relies on a Gibbs sampling method
to approximate the intractable posterior. The experiments have shown the benefit
of mixture models in an unsupervised setting. Even on controlled data, a single
SP-HRTM have not performed an effective clustering due to its inability to learn
root node posteriors which contains global structure information. On the other hand,
BNP-SP-HRTM achieves satisfactory results. Moreover, thanks to its ability to learn
the number of clusters directly from data, it is computationally more efficient than
the finite mixture model.

6.4. Conclusion 133

The second unbounded model introduced is a Bayesian extension of HOSVD-
HRTM, which can learn the decomposition ranks directly from data, simplifying the
model selection step. The core of the proposed approach is the definition of a prior
distribution on the rank values. Then, a stochastic search procedure is implemented
to explore rank values during the learning phase. The Bayesian fashion of the model
is essential to generate new parameters on the fly when the rank value increases. The
experimental analysis conducted shows the ability of Bayesian-HOSVD-HRTM to
learn suitable rank values to outperform SP-HRTM.

135

Chapter 7

Conclusion

In this thesis, we have built a connection between structured data processing and
tensors theory. Such a connection has paved the way to the definition of new recursive
models by leveraging tensor decompositions. This new class of models have been
extensively studied, showing their capacity to limit model complexity as well as the
inductive bias they introduce.

The first contribution of this work has been the definition of a framework that
relates recursive models for structured data and tensors. This connection arises
observing that recursive models with a tensor parametrisation can be used as a mould
to define different recursive models by imposing specific constraints on the tensor
parameter. Thus, we have argued that full-tensorial models have a low inductive
bias since they do not add such constraints. We have instantiated the proposed
framework by defining two full-tensorial models: HRTM and RecNTN. The former
is a probabilistic model whose state-transition distribution models all possible joint
configurations of the input label and the child hidden states. The latter is a neural
model whose state-transition function aggregates the input label and the child hidden
states of a node through a multi-affine map. Moreover, we have shown how existing
approximations in the literature can be framed in the proposed framework, highlighting
their major drawbacks.

The connection built between tensors and recursive models has paved the way to
applying tensor decompositions to define new state-transition functions. The main
advantage of these new tensor-based state-transition functions is that they provided a
principled way to limit their complexity. By varying the decomposition rank, we can
control the trade-off between model complexity and model expressiveness. Thus, we
have introduced nine different recursive models applying three tensor decompositions
(i.e. CP, HOSVD, TT) on three model classes (i.e. probabilistic, neural and LSTM).
A key point of our work has been the study of the inductive bias introduced by each
tensor decomposition. To experimentally assess the advantages of tensor-based models,
we have introduced an ad-hoc task on boolean expressions. Despite the simplicity of
the task, the results demonstrate that the sum-based and the full-tensorial models
achieve performances comparable with a dummy model which simply outputs the
most probable answer. In the sum-based models, we have concluded that these
performances are due to the independence assumption imposed among the child

136 Chapter 7. Conclusion

hidden states. In the full-tensorial models, we argue that the poor performances are
due to their strict relation between model complexity and hidden state size. On the
other hand, the models based on the tensor decompositions always achieve 100%
accuracy, independently of the model class, using a small number of parameters. A
second set of experiments have been run on a benchmark from literature, including
both a performance and a computational cost analysis. The results obtained confirm
the behaviour highlighted in the previous task. Regarding the computational cost
of the proposed models, the models which leverage the tensor decompositions are
surprisingly slower than full-tensorial models (for the same number of parameters).
We argue that this behaviour is attributable to the optimisations in the computational
backend used for the implementation (i.e. PyTorch), which favour the execution of
fewer operations on larger operands rather than more operations on small operands.

Despite the effectiveness of the proposed tensor models, they cannot be applied
in application domains where the structure out-degree is not known. Thus, we have
extended the recursive tensor models by imposing weight sharing constraints on
decomposition factors. The weight sharing constraints allow removing the relationship
between the number of model parameters and the structure out-degree. Unfortunately,
this constraint can be applied only to CP and TT decompositions. The HOSVD
cannot be extended in this fashion since its core tensor order depends on the structure
out-degree. Also in this case, the use of different tensor decompositions leads to the
definition of models with different inductive bias. In particular, models which leverage
the CP approximation define permutational invariant state-transition functions (i.e.
they ignore the child order). This inductive bias can be deduced by the relation
between the symmetric tensors and the CP approximation with shared factor matrices.
On the other hand, models which leverage TT approximation define state-transition
functions which exploit the child order. We have experimentally assessed the proposed
models on different natural language tasks. While probabilistic models do not achieve
satisfactory results, neural models based on the infinite tensor decompositions seem
appropriate for semantic textual similarity tasks. In this respect, a qualitative analysis
has highlighted the importance of tensor-based inductive bias in this task.

All the models which leverage tensor decompositions control the trade-off between
model complexity and model expressiveness by regulating a model hyper-parameter
(i.e. the decomposition rank). Nevertheless, finding the best hyper-parameters values
is a difficult challenge in ML that usually requires a costly model-selection procedure.
To this end, we have explored the Bayesian approach to develop unbounded models
for structured data, i.e. models which adapt their complexity directly to the input
data. In particular, we have introduced two different Bayesian models. The former is
a Bayesian Non-Parametric mixture model to tackle unsupervised tasks on structured
data. The results obtained on two clustering tasks show the mixture model effective-
ness in capturing global structure properties as well as its ability to determine the
correct number of mixture components. The latter model is a Bayesian extension of
HOSVD-HRTM which learns the decomposition ranks during the learning procedure.

Chapter 7. Conclusion 137

The experimental analysis conducted shows the ability of the Bayesian model to learn
suitable rank values outperforming the SP-HRTM.

The connection introduced in this thesis between tensors and ML models for
structured data opens the way for future research.

From an applicative perspective, the promising results of this work encourage us
to further apply the proposed framework on more complex tasks. A very interesting
task could be the source code analysis. We believe that the inductive bias of tensor
decompositions are suitable to model the semantics of different commands. For
example, the TT decomposition seems to be appropriate to model the execution of a
list of commands.

From a more theoretic perspective, it would be interesting to formalise the con-
nection between the approximation of the state-transition function and the model
inductive bias. For example, we would like to define a measure to quantify how much
the inductive bias introduced by the approximation of the state-transition function
limits the model expressiveness. Such a measure should take into account the size of
the hidden state. Nevertheless, when tensor decompositions are applied, it should
also consider the value of the decomposition rank. In this regard, it would be also
interesting to compare how the rank value affects this measure in different tensor
decompositions. Similarly, we could also compare the approximations introduced by
the tensor decompositions with the sum-based approximation. A good starting point
for this study could be a theoretic analysis of the two tasks considered in Chapter
4, showing that all the operators considered can be represented by a tensor. Then,
we could compare the minimal rank value required to approximate such tensors by
each tensor decompositions. In the same fashion, we could compute the minimal value
of the hidden state size required to represent the operators as a summation. On the
same line, it would be also interesting to investigate the effect of the training data size
in the experiments. In fact, when more data are available, the inductive bias should
be less needed.

The framework proposed in this thesis can also be a starting point for developing
new models for structured data. In probabilistic models, we believe that the most
exciting research direction entails defining new Bayesian models. In this regard, the
first step would be applying the approach used in Bayesian-HOSVD-HRTM to the
other tensor decompositions. On the same line, it would be interesting to combine the
Bayesian approach to determine decomposition ranks automatically with a Bayesian
Non-Parametric approach to determine the hidden state size (e.g. [161, 57]). In this
way, it would be possible to define recursive models that adapt their hidden state
size on the complexity of the input structure and their decomposition rank on the
complexity of the interactions among constituents. On sequence domains, an example
of such models has been introduced in [145].

Regarding neural models, it would be interesting to apply our tensor framework to
other common approaches used in the literature to process structures that have not

138 Chapter 7. Conclusion

been discussed in our thesis, e.g. convolutional models and reservoir computing. In
both cases, the contextual information are aggregated through sum-based functions
(e.g. in Tree-based Convolutional Neural Network [120] and in Tree Echo State Network
[59]). In the case of reservoir computing, further studies should also determine how
the tensor that parametrises the encoding function should be initialised to ensure
their typical contractive property. Another interesting venue for the application of
the proposed framework are the transformers [167] (and more in general the attention
mechanism [14]). In this context, tensor decompositions can be used to model more
complex interactions among query, key and value matrices while limiting the number
of parameters. For example, in [111] the authors use a combination of the CP and
HOSVD decomposition to this purpose.

Another exciting research line would be the extension of our tensor framework to
deal with cyclic graphs. In this context, most of the existing ML models aggregate
contextual information by means of summations [10]. Nevertheless, further investi-
gations are required to incorporate specific properties of aggregation functions for
graphs, such as the permutation invariance. A good starting point is given by the
infinite canonical approximation introduced in Chapter 5, which naturally implements
permutation invariant aggregation functions.

Despite the theoretic appealing of tensors, there are some limitations that should
be considered in their practical applications. The first limitation is the numerical
instability of tensor operations since they commonly involve the multiplication of L
factors, where L is the tensor order. As we have shown in Section 3.2.2, the instability
also affects the gradient computation. Note that the instability arises also when tensor
decompositions are used since they are also based on multiplications. This aspect is
extremely relevant in applications such as learning on social graphs, where the number
of neighbours to aggregate can be in the order of thousands. Another limitation
that should be considered regards the deep-learning frameworks (e.g. PyTorch) used
to implement tensor models. As we have highlighted in Section 4.4.6, they are not
optimised to perform tensor operations. Thus, using these frameworks can limit the
computational advantages of using tensor decompositions. In this respect, it is worth
to be mentioning the recent python library TensorLy [101].

139

Appendix A

List of Publications

The following list includes all the publications produced during the Ph.D. programme:

1. D. Bacciu and D. Castellana. “Mixture of Hidden Markov Models as tree
encoder”. In: Proceedings of the 26th European Symposium on Artificial Neural
Networks, Computational Intelligence and Machine Learning (ESANN’18). 2018

2. D. Bacciu and D. Castellana. “Bayesian mixtures of Hidden Tree Markov
Models for structured data clustering”. In: Neurocomputing 342 (2019). doi:
10.1016/j.neucom.2018.11.091

3. D. Bacciu and D. Castellana. “Learning Tree Distributions by Hidden Markov
Models”. In: Workshop on Learning and Automata (LearnAut’18). 2018

4. D. Castellana and D. Bacciu. “Bayesian Tensor Factorisation for Bottom-up
Hidden Tree Markov Models”. In: 2019 International Joint Conference on
Neural Networks (IJCNN). vol. 2019-July. IEEE, July 2019, pp. 1–8. doi:
10.1109/IJCNN.2019.8851851

5. D. Castellana and D. Bacciu. “Generalising Recursive Neural Models by Tensor
Decomposition”. In: 2020 International Joint Conference on Neural Networks
(IJCNN). IEEE, July 2020, pp. 1–8. doi: 10.1109/IJCNN48605.2020.9206597

6. D. Castellana and D. Bacciu. “Tensor Decompositions in Recursive Neural-
Networks for Tree-Structured Data”. In: Proceedings of the the 28th European
Symposium on Artificial Neural Networks, Computational Intelligence and Ma-
chine Learning (ESANN20). 2020

7. D. Castellana and D. Bacciu. “Learning from Non-Binary Constituency Trees
via Tensor Decomposition”. In: 28th International Conference on Computational
Linguistic. 2020

8. D. Castellana and D. Bacciu. “A Tensor Framework for Learning in Structured
Domains”. In: Neurocomputing (2021). Submitted

https://doi.org/10.1016/j.neucom.2018.11.091
https://doi.org/10.1109/IJCNN.2019.8851851
https://doi.org/10.1109/IJCNN48605.2020.9206597

141

Appendix B

Contributed Code

The following list includes all the code repositories made available to reproduce all
the experiments conducted in this thesis:

• https://github.com/danielecastellana22/tensor-tree-nn provides a
framework to build recursive (either probabilistic or neural) models for
tree-structured by leveraging tensor decomposition. This repository contains
the code for the experiments conducted in Chapter 4 and Chapter 5;

• https://github.com/danielecastellana22/Mixture-HTMM provides the im-
plementation of mixture models for tree data clustering based on SP-HRTM.
This repository contains the code for the experiments conducted in Section 6.2;

• https://github.com/danielecastellana22/HOSVD-HTMM provides the imple-
mentation of the Bayesian extension of HOSVD-HRTM. This repository contains
the code for the experiments conducted in Section 6.3.

https://github.com/danielecastellana22/tensor-tree-nn
https://github.com/danielecastellana22/Mixture-HTMM
https://github.com/danielecastellana22/HOSVD-HTMM

143

Appendix C

Proofs

C.1 Proof of Theorem 1

Theorem (Augmented tensors). Let ψ : RI1 × · · · × RID → RK be a multi-affine
function. There exists an augmented tensor T ∈ R(I1+1)×···×(ID+1)×K such that, for
every ad ∈ RId, it holds:

ψ (a1, . . . ,ad) = T (ā1, . . . , ād) ,

where ād = [ad; 1] are the homogeneous coordinate of d-th input vector ad.

Proof. By the Lemma 4.1.3 in [61], we can write:

ψ(a1, . . . ,aD) = ψ(0, . . . ,0) +
∑

S⊆{1,...,d}
S={j1,...,jk},M≥1

fS(aj1 , . . . ,ajL), (C.1)

where 0 ∈ RI1 are the vectors with all the entries equal to 0 and each fS is a multi-linear
function. Hence, for each fS , it exists a tensor F S such that:

fS(aj1 , . . . ,ajk) = F S(aj1 , . . . ,ajk) = F S(AS), (C.2)

where AS = {aj |j ∈ S} is the subset of input vectors indexed by the elements in S.
First of all, we show how the multi-linear functions F S can be stacked together

into the augmented tensor T ∈ R(I1+1)×···×(ID+1)×K . To this end, we define T as:

T [i1, . . . , iD, :] =

ψ(0, . . . ,0) if ∀d ∈ [1, D]. id = Id + 1

F S [ij1 , . . . , ijL , :] if ∀d ∈ [1, D]. id =

Id + 1 if d /∈ S

ijl if d ∈ S ∧ jl = d

.

(C.3)
In order to conclude the proof, we must show that the multi-linear function induced

by the augmented tensor T is exactly ψ(·). Thus, we prove that:

T (a1, . . . ,aD) =
∑

S⊆{1,...,D}
F S(AS), (C.4)

where the constant vector ψ(0, . . . ,0) is obtained when S = ∅.

144 Appendix C. Proofs

We prove it by induction over the number of dimensions D.

Base case D = 1. By the definition of multi-linear function induced by a tensor, it
holds:

T (ā1) =
I1+1∑
i1

T [i1, :]ā1[i1] =

=
I1∑
i1

T [i1, :]a[i1] + T [I + 1, :] =
I1∑
i1

F {1}[i1, :]a[i1] + ψ(0),
(C.5)

where the last equality holds by the definition of T in Eq. (C.3). Thus, we can conclude
that:

T (ā1) =
∑
S⊆{1}

F S(AS), (C.6)

Inductive case. By the definition of multi-linear function induced by a tensor, it
holds:

T (ā1, . . . , āD) =
I1+1∑
i1=1
· · ·

ID+1∑
iD=1

T [i1, . . . , iD, :]ā1[i1] . . . āD[iD] =

=
I1+1∑
i1=1
· · ·

ID∑
iD=1

T [i1, . . . , iD, :]ā1[i1] . . .aD[iD]+

+
I1+1∑
i1=1
· · ·

ID∑
iD=1

T [i1, . . . , ID + 1, :]ā1[i1] . . .aD−1[iD−1].

(C.7)

The sub-tensor B = T [:, . . . , ID + 1, :] is a (D − 1)-way tensor. The function
induced by B is applied on vectors represented in homogeneous coordinates; thus, it
is an D − 1-way augmented tensor. By applying the inductive hypothesis, we obtain:

B(ā1, . . . , āD−1) =
∑

S⊆{1,...,D−1}
F S(AS). (C.8)

where F S are sub-arrays of T .
On the other hand, also the sub-tensor C =

∑ID
iD=1 T [:, . . . , iD, :] is a (D − 1)-way

augmented tensor. Nevertheless, it is obtained by contracting the tensor T with the
last input vector aD. By applying the inductive hypothesis on C, we obtain:

C(ā1, . . . , āD−1) =
∑

S⊆{1,...,D−1}
F ′S(AS), (C.9)

where F ′S do not correspond to any sub-arrays of T . However, we can observe that
each F ′S is equivalent to

∑
iD
F S∪{D}[:, . . . , iD, :]aD[id], i.e. they can be obtained by

C.1. Proof of Theorem 1 145

contracting the sub-arrays F S∪{D} of T with the input vector aD. Thus, we can write:

C(ā1, . . . , āD−1) =
∑

S′⊆{1,...,D−1}
S=S′∪{D}

F S(AS). (C.10)

Finally, by plugging Eq. (C.8) and Eq. (C.10) into Eq. (C.7), we obtain:

T (ā1, . . . , āD) =

=
∑

S⊆{1,...,D−1}
F S(AS) +

∑
S′⊆{1,...,D−1}
S=S′∪{D}

F S(AS) =

=
∑

S⊂{1,...,D}
F S(AS).

(C.11)

Thus, the inductive hypothesis is verified.
We can conclude that for every multi-affine map ψ : RI1 × · · · × RID → RK , there

exists a T of size (I1 + 1)× · · · × (ID + 1)×K such that:

ψ(a1, . . . ,aD) = T (ā1, . . . , āD) (C.12)

147

Appendix D

EM Procedures

In this appendix, we report the specialisations of the EM procedure that can be used
to learn the state-transition distribution of SP-HRTM, CP-HRTM, HOSVD-HRTM
and TT-HRTM. Each specialisation is based on a slight modification of the learning
procedure introduced for Full-HRTM in Section 3.2.1. We recall that the upward-
downward procedure used to compute the posteriors requires two recursive pass of
the input structure. An upward pass which goes from the sinks to the super-source
node, and a downward pass which goes from the super-source node to the sinks.

For the sake of simplicity, we present the E-step considering only one training
example (X ,Y), where X is the input structure and Y is the output structure.
Moreover, we assume that the input labels are categorical and we define a different
state-transition parametrisation for each input label. Thus, all model parameters have
a new dimension that can be indexed by the input label.

D.1 SP-HRTM Derivations

The parameters of the SP-HRTM state-transition distribution are the tensors U1, . . . ,
UL (which parametrise the mixture component) and the matrix S (which parametrises
the mixture distribution). Moreover, we consider the matrix A to parametrise the
prior distribution P (hv | xv,A) on sinks.

E-step

The posteriors required are:

εs,vl,v = P (Sv = l, hvl, hv | X ,Y), ∀v ∈ vert(X); (D.1)

εv = P (hv | X ,Y), ∀v ∈ vert(X). (D.2)

Upward pass. This procedure computes the following values:

βv = P (hv | X v,Yv). (D.3)

Let v be a sink node, the quantity βv is computed as:

βv[hv] = P (yv | hv)A[xv, hv]
Z

, (D.4)

148 Appendix D. EM Procedures

where Z = P (yv | xv) is a normalisation constant.
Let v be an internal node, its β value can be computed as:

βv[hv] ≈
P (yv | hv)

∑L
l=1
∑
hvl
S[xv, l]U l[xv, hvl, hv]βvl[hvl]
Z

, (D.5)

where Z is a normalisation constant. Moreover, we use the approximation symbol to
emphasise that this equality does not hold, as we stated in Eq. (3.26).

Downward pass. In this procedure, we first compute the posterior εs,vl,v given the
parent posterior εv:

εs,vl,v[l, hvl, hv] = εv[hv]βvl[hvl]S[xv, l]U l[xv, hvl, hv]∑L
l′=1

∑
hvl′

εv[hv]βvl′ [hvl′]S[xv, l′]U l′ [xv, hvl′ , hv]
. (D.6)

Then, we can obtain the posterior of each hidden child variable as:

εvl[hvl] =
∑
hv

εs,vl,v[l, hvl, hv] (D.7)

M-step

The parameter updates are:

A[i, j] ∝
N∑
n=1

∑
v∈vert(X n)

ch(v)=∅

εv[hv]× I[xv = i], (D.8a)

S[i, l] ∝
N∑
n=1

∑
v∈vert(X n)

∑
hvl

∑
hv

εs,vl,v[l, hvl, hv]× I[xv = i], (D.8b)

U l[i, j, k] ∝
N∑
n=1

∑
v∈vert(X n)

εs,vl,v[l, j, k]× I[xv = i], (D.8c)

D.2 CP-HRTM Derivations

The parameters of the CP-HRTM state-transition distribution are the factor matri-
ces U1, . . . ,UL,Q. Moreover, we consider the matrix A to parametrise the prior
distribution P (hv | xv,A) on sinks.

E-step

The posteriors required by the EM algorithm are:

ρvl,v = P (hvl, rv | X ,Y), (D.9)

ρv = P (rv, hv | X ,Y), (D.10)

εv = P (hv | X ,Y). (D.11)

D.2. CP-HRTM Derivations 149

Upward pass. The aim is the computation of the values:

βv = P (hv | X v,Yv), (D.12)

γv = P (rv | X v,Yv). (D.13)

Let v be a sink node, the quantity βv is computed as:

βv[hv] = P (yv | hv)A[xv, hv]
Z

, (D.14)

where Z = P (yv | xv) is a normalising constant.
If v is an internal node, we first compute γv as:

γv[rv] =
L∏
l=1

∑
hvl

U l[xv, hvl, rv]βvl[hvl], (D.15)

then we compute βv as:

βv[hv] =
P (yv | hv)

∑
rv
Q[xv, rv, hv]γv[rv]
Z

, (D.16)

where Z = P (Yv |X v)∏L

l=1 P (Yvl|X vl)
is a normalising constant.

Downward pass. The aim is the computations of the posterior ρv given εv as:

ρv[rv, hv] =
Q[xv, rv, hv]γv[rv]εv[hv]∑

rv
Q[xv, rv, hv]γv[rv]

. (D.17)

The posterior ρvl,v is computed as:

ρvl,v[hvl, rv] = ρ̃v[rv]U l[xv, hvl, rv]βvl[hvl]∑
hvl
U l[xv, hvl, rv]βvl[hvl]

, (D.18)

where ρ̃v[rv] =
∑
hv
ρv[rv, hv].

Finally, the posterior εvl is computed by marginalisation:

εvl[hvl] =
∑
rv

ρvl,v[hvl, rv]. (D.19)

150 Appendix D. EM Procedures

M-step

The parameter updates are:

U l[i, jl, k] ∝
N∑
n=1

∑
v∈vert(X n)

ρvl,v[jl, . . . , k]× I[xv = i], (D.20a)

Q[i, j, k] ∝
N∑
n=1

∑
v∈vert(X n)

ρv[j, . . . , k]× I[xv = i], (D.20b)

Sl[i, k] ∝
N∑
n=1

∑
v∈vert(X n)

ch(v)=∅

εv[k]× I[xv = i]. (D.20c)

D.3 HOSVD-HRTM Derivations

The parameters of the HOSVD-HRTM state-transition distribution are the factor
matrices U1, . . . ,UL,Q and the core tensor G. Moreover, we consider the matrix A
to parametrise the prior distribution P (hv | xv,A) on sinks.

E-step

The posteriors required are:

ρvl = P (hvl, rv | X ,Y), (D.21)

ρv1,...,vL,v = P (rv1, . . . , rvL, rv | X ,Y), (D.22)

ρv = P (rv, hv | X ,Y), (D.23)

εv = P (hv | X ,Y). (D.24)

Upward pass. This procedure aims to compute the values:

βv = P (hv | X v,Yv), (D.25)

γvl = P (rvl | X v,Yv), (D.26)

γv = P (rv | X v,Yv). (D.27)

Let v be a sink node, the quantity βv is computed as:

βv[hv] = P (yv | hv)A[xv, hv]
Z

, (D.28)

where Z = P (yv | xv) is a normalising constant.
Let v be an internal node, we first compute γvl of its child nodes as:

γvl[rvl] =
∑
hvl

U l[xv, hvl, rvl]βvl[hvl]. (D.29)

D.3. HOSVD-HRTM Derivations 151

Then, we compute γv as:

γv[rv] =
∑
rv1

· · ·
∑
rvL

G[xv, hv1, . . . , hvL]
L∏
l=1

γvl[rvl]. (D.30)

Finally, we can compute βv as:

βv[hv] =
P (yv | hv)

∑
rv
Q[xv, rv, hv]γv[rv]
Z

, (D.31)

where Z = P (Yv |X v)∏L

l=1 P (Yvl|X vl)
is a normalising constant.

Downward pass. The aim is the computation of the posterior ρv given εv as:

ρv[rv, hv] =
Q[xv, rv, hv]γv[rv]εv[hv]∑

rv
Q[xv, rv, hv]γv[rv]

. (D.32)

The posterior ρv1,...,vL,v is computed as:

ρv1,...,vL,v[rv1, . . . , rvL, rv] = ρ̃v[rv]G[xv, rv1, . . . , rvL, rv]
∏L
l=1 γvl[rvl]∑

rv1 · · ·
∑
rvL
G[xv, rv1, . . . , rvL, rv]

∏L
l=1 γvl[rvl]

,

(D.33)
where ρ̃v[rv] =

∑
hv
ρv[rv, hv].

Then, we compute the posterior ρvl as:

ρvl[hvl, rvl] = ρ̃vl[rvl]U l[xv, hvl, rvl]βvl∑
rvl
U l[xv, hvl, rvl]

(D.34)

where ρ̃vl[rvl] =
∑
rv

∑
rvl′ 6=rvl

ρv1,...,vL,v[rv1, . . . , rvL, rv].
Finally, the posterior εvl is computed by marginalisation:

εvl[hvl] =
∑
rvl

ρvl[hvl, rvl]. (D.35)

M-step

The parameter updates are:

U l[i, jl, k] ∝
N∑
n=1

∑
v∈vert(X n)

ρvl[jl, k]× I[xv = i], (D.36a)

G[i, j1, . . . , jL, k] ∝
N∑
n=1

∑
v∈vert(X n)

ρv1,...,vL,v[j1, . . . , jL, k]× I[xv = i], (D.36b)

Q[i, j, k] ∝
N∑
n=1

∑
v∈vert(X n)

ρv[j, k]× I[xv = i], (D.36c)

Sl[i, k] ∝
N∑
n=1

∑
v∈vert(X n)

ch(v)=∅

εv[k]× I[xv = i]. (D.36d)

152 Appendix D. EM Procedures

D.4 TT-HRTM Derivations

The parameters of the TT-HRTM state-transition distribution are the core tensors
G1, . . . ,GL,Q. Moreover, we consider the matrix A to parametrise the prior distri-
bution P (hv | xv,A) on sinks.

E-step

The posteriors required are:

ρvl = P (rvl−1, hvl, rvL | X ,Y), (D.37)

ρvL,v = P (rvL, hv | X , (D.38)

εv = P (hv | X ,Y). (D.39)

Upward pass. This procedure computes the values:

βv = P (hv | X v,Yv), (D.40)

γvl = P (rvl | X v1, . . . ,X vl−1,Yv). (D.41)

Let v be a sink node, the quantity βv is computed as:

βv[hv] = P (yv | hv)A[xv, hv]
Z

, (D.42)

where Z = P (yv | xv) is a normalising constant.
Let v be an internal node, we first compute γv1 associated to its first child node as:

γv1[rv1] =
∑
hv1

G1[xv, hv1, rv1]βv1[hv1]. (D.43)

Then, we recursively computes γvl for all l ∈ [1, L] as:

γvl[rvl] =
∑
hvl

∑
rvl−1

Gl[xv, rvl−1hvl, rvl]βvl[hvl]γvl−1[rvl−1]. (D.44)

Finally, we can compute βv as:

βv[hv] =
P (yv | hv)

∑
rvL
Q[xv, rvL, hv]γvL[rvL]
Z

, (D.45)

where Z = P (Yv |X v)∏L

l=1 P (Yvl|X vl)
is a normalising constant.

Downward pass. This procedure first computes the posterior ρvL,v given εv as:

ρvL,v[rvL, hv] =
εv[hv]Q[xv, rvL, hv]γvL[rvL]∑
rvL
Q[xv, rvL, hv]γvL[rvL] . (D.46)

D.4. TT-HRTM Derivations 153

Then, the posterior ρvl is computed as:

ρvl[rvl−1, hvl, rvl] = ρ̃vl[rvl]Gl[xv, rvl−1, hvl, rvl]γvl[rvl]βvl[hvl]∑
rvl−1

∑
hvl
Gl[xv, rvl−1, hvl, rvl]γvl[rvl]βvl[hvl]

, (D.47)

where ρ̃vl[rvl] =
∑
rvl+1

∑
hvl+1

ρvl+1[rvl, hvl+1, rvl+1].
Finally, the posterior εvl is computed by marginalisation:

εvl[hvl] =
∑
rvl−1

∑
rvl

ρvl[rvl−1, hvl, rvl]. (D.48)

M-step

The parameter updates are:

Gl[i, jl−1, jl, k] ∝
N∑
n=1

∑
v∈vert(X n)

ρvl[jl−1, jl, k]× I[xv = i], (D.49a)

Q[i, j, k] ∝
N∑
n=1

∑
v∈vert(X n)

ρvL,v[j, k]× I[xv = i], (D.49b)

Sl[i, k] ∝
N∑
n=1

∑
v∈vert(X n)

ch(v)=∅

εv[k]× I[xv = i]. (D.49c)

155

Bibliography

[1] E. Acar and B. Yener. “Unsupervised multiway data analysis: A literature
survey”. In: IEEE Transactions on Knowledge and Data Engineering 21.1 (Jan.
2009), pp. 6–20. doi: 10.1109/TKDE.2008.112.

[2] S. Adhikary, S. Srinivasan, J. Miller, G. Rabusseau, B. Boots, S. Adhikary,
J. Miller, G. Rabusseau, and B. Boots. “Quantum Tensor Networks, Stochastic
Processes, and Weighted Automata”. In: Proceedings of The 24th International
Conference on Artificial Intelligence and Statistics. Ed. by A. Banerjee and
K. Fukumizu. Vol. 130. Proceedings of Machine Learning Research. PMLR,
2021, pp. 2080–2088.

[3] A. Anandkumar, R. Ge, S. M. Kakade, D. Hsu, and M. Telgarsky. “Tensor
decompositions for learning latent variable models”. In: Journal of Machine
Learning Research 15 (2014), pp. 2773–2832.

[4] S. Arora, N. Cohen, W. Hu, and Y. Luo. “Implicit Regularization in Deep
Matrix Factorization”. In: Advances in Neural Information Processing Systems
32. Ed. by H. Wallach, H. Larochelle, A. Beygelzimer, d\textquotesingle Alché-
Buc, E. Fox, and R. Garnett. Curran Associates, Inc., 2019, pp. 7413–7424.

[5] S. Arora, Y. Liang, and T. Ma. “A simple but though Baseline for Sentence Em-
beddings”. In: International Conference on Learning Representations (ICLR)
15 (2017), pp. 416–424.

[6] P. Austrin, P. Kaski, and K. Kubjas. “Tensor Network Complexity of Multilinear
Maps”. In: 10th Innovations in Theoretical Computer Science Conference
(ITCS 2019). Ed. by A. Blum. Vol. 124. Leibniz International Proceedings in
Informatics (LIPIcs). Dagstuhl, Germany: Schloss Dagstuhl–Leibniz-Zentrum
fuer Informatik, 2018, 7:1–7:21. doi: 10.4230/LIPIcs.ITCS.2019.7.

[7] D. Bacciu and D. Castellana. “Bayesian mixtures of Hidden Tree Markov
Models for structured data clustering”. In: Neurocomputing 342 (2019). doi:
10.1016/j.neucom.2018.11.091.

[8] D. Bacciu and D. Castellana. “Learning Tree Distributions by Hidden Markov
Models”. In: Workshop on Learning and Automata (LearnAut’18). 2018.

[9] D. Bacciu and D. Castellana. “Mixture of Hidden Markov Models as tree
encoder”. In: Proceedings of the 26th European Symposium on Artificial Neural
Networks, Computational Intelligence and Machine Learning (ESANN’18).
2018.

https://doi.org/10.1109/TKDE.2008.112
https://doi.org/10.4230/LIPIcs.ITCS.2019.7
https://doi.org/10.1016/j.neucom.2018.11.091

156 Bibliography

[10] D. Bacciu, F. Errica, A. Micheli, and M. Podda. A gentle introduction to deep
learning for graphs. Sept. 2020. doi: 10.1016/j.neunet.2020.06.006.

[11] D. Bacciu, A. Micheli, and A. Sperduti. “An input-output hidden Markov
model for tree transductions”. In: Neurocomputing 112 (2013), pp. 34–46. doi:
10.1016/j.neucom.2012.12.044.

[12] D. Bacciu, A. Micheli, and A. Sperduti. “Compositional Generative Mapping
for Tree-Structured Data - Part I: Bottom-Up Probabilistic Modeling of Trees”.
In: IEEE Transactions on Neural Networks and Learning Systems 23.12 (2012),
pp. 1987–2002. doi: 10.1109/TNNLS.2012.2222044.

[13] D. Bacciu, A. Micheli, and A. Sperduti. “Compositional Generative Mapping
for Tree-Structured Data - Part II: Topographic Projection Model”. In: IEEE
Transactions on Neural Networks and Learning Systems (2013). doi: 10.1109/

TNNLS.2012.2228226.

[14] D. Bahdanau, K. Cho, and Y. Bengio. “Neural Machine Translation by Jointly
Learning to Align and Translate”. In: International Conference on Learning
Representations (ICLR) (2015), pp. 1–15. doi: 10.1146/annurev.neuro.26.

041002.131047.

[15] E. Ballico. “An upper bound for the real tensor rank and the real symmetric
tensor rank in terms of the complex ranks”. In: Linear and Multilinear Algebra
62.11 (Nov. 2014), pp. 1546–1552. doi: 10.1080/03081087.2013.839671.

[16] E. Ballico. “An Upper Bound for the Tensor Rank”. In: ISRN Geometry 2013
(2013), pp. 1–3. doi: 10.1155/2013/241835.

[17] D. Barber. Bayesian Reasoning and Machine Learning. Cambridge University
Press, 2016, p. 646. doi: 10.1017/CBO9780511804779.

[18] L. E. Baum, T. Petrie, G. Soules, and N. Weiss. “A Maximization Technique
Occurring in the Statistical Analysis of Probabilistic Functions of Markov
Chains”. In: The Annals of Mathematical Statistics (1970). doi: 10.1214/

aoms/1177697196.

[19] H. Ben-Younes, R. Cadene, M. Cord, and N. Thome. “MUTAN: Multimodal
Tucker Fusion for Visual Question Answering”. In: Proceedings of the IEEE
International Conference on Computer Vision. 2017. doi: 10.1109/ICCV.2017.

285.

[20] Y. Bengio and P. Frasconi. “Input-output HMMs for sequence processing”. In:
IEEE Transactions on Neural Networks 7.5 (Sept. 1996), pp. 1231–1249. doi:
10.1109/72.536317.

[21] S. Bird, E. Klein, and E. Loper. Natural language processing with Python:
analyzing text with the natural language toolkit. " O’Reilly Media, Inc.", 2009.

[22] C. M. Bishop. Pattern Recognition and Machine Learning (Information Science
and Statistics). Berlin, Heidelberg: Springer-Verlag, 2006.

https://doi.org/10.1016/j.neunet.2020.06.006
https://doi.org/10.1016/j.neucom.2012.12.044
https://doi.org/10.1109/TNNLS.2012.2222044
https://doi.org/10.1109/TNNLS.2012.2228226
https://doi.org/10.1109/TNNLS.2012.2228226
https://doi.org/10.1146/annurev.neuro.26.041002.131047
https://doi.org/10.1146/annurev.neuro.26.041002.131047
https://doi.org/10.1080/03081087.2013.839671
https://doi.org/10.1155/2013/241835
https://doi.org/10.1017/CBO9780511804779
https://doi.org/10.1214/aoms/1177697196
https://doi.org/10.1214/aoms/1177697196
https://doi.org/10.1109/ICCV.2017.285
https://doi.org/10.1109/ICCV.2017.285
https://doi.org/10.1109/72.536317

Bibliography 157

[23] G. G. Calvi, A. Moniri, M. Mahfouz, Q. Zhao, and D. P. Mandic. “Compression
and Interpretability of Deep Neural Networks via Tucker Tensor Layer: From
First Principles to Tensor Valued Back-Propagation”. In: CoRR abs/1903.0
(Mar. 2019).

[24] J. D. Carroll and J. J. Chang. “Analysis of individual differences in multidimen-
sional scaling via an n-way generalization of "Eckart-Young" decomposition”.
In: Psychometrika 35.3 (Sept. 1970), pp. 283–319. doi: 10.1007/BF02310791.

[25] D. Castellana and D. Bacciu. “A Tensor Framework for Learning in Structured
Domains”. In: Neurocomputing (2021). Submitted.

[26] D. Castellana and D. Bacciu. “Bayesian Tensor Factorisation for Bottom-up
Hidden Tree Markov Models”. In: 2019 International Joint Conference on
Neural Networks (IJCNN). Vol. 2019-July. IEEE, July 2019, pp. 1–8. doi:
10.1109/IJCNN.2019.8851851.

[27] D. Castellana and D. Bacciu. “Generalising Recursive Neural Models by Tensor
Decomposition”. In: 2020 International Joint Conference on Neural Networks
(IJCNN). IEEE, July 2020, pp. 1–8. doi: 10.1109/IJCNN48605.2020.9206597.

[28] D. Castellana and D. Bacciu. “Learning from Non-Binary Constituency Trees
via Tensor Decomposition”. In: 28th International Conference on Computational
Linguistic. 2020.

[29] D. Castellana and D. Bacciu. “Tensor Decompositions in Recursive Neural-
Networks for Tree-Structured Data”. In: Proceedings of the the 28th European
Symposium on Artificial Neural Networks, Computational Intelligence and
Machine Learning (ESANN20). 2020.

[30] R. B. Cattell. “"Parallel proportional profiles" and other principles for deter-
mining the choice of factors by rotation”. In: Psychometrika 9.4 (Dec. 1944),
pp. 267–283. doi: 10.1007/BF02288739.

[31] R. B. Cattell. “The three basic factor-analytic research designs–their interrela-
tions and derivatives”. In: Psychological Bulletin 49.5 (Sept. 1952), pp. 499–520.
doi: 10.1037/h0054245.

[32] X. Chen, C. Liu, and D. Song. “Tree-to-tree Neural Networks for Program
Translation”. In: Workshop track in International Conference on Learning
Representations (ICLR) 2018-Decem (2018), pp. 2547–2557.

[33] Z. Cheng, C. Yuan, J. Li, and H. Yang. “TreeNet: Learning sentence repre-
sentations with unconstrained tree structure”. In: IJCAI International Joint
Conference on Artificial Intelligence 2018-July (2018), pp. 4005–4011. doi:
10.24963/ijcai.2018/557.

https://doi.org/10.1007/BF02310791
https://doi.org/10.1109/IJCNN.2019.8851851
https://doi.org/10.1109/IJCNN48605.2020.9206597
https://doi.org/10.1007/BF02288739
https://doi.org/10.1037/h0054245
https://doi.org/10.24963/ijcai.2018/557

158 Bibliography

[34] K. Cho, B. van Merrienboer, D. Bahdanau, and Y. Bengio. “On the Properties
of Neural Machine Translation: Encoder–Decoder Approaches”. In: Proceedings
of SSST-8, Eighth Workshop on Syntax, Semantics and Structure in Statistical
Translation. Stroudsburg, PA, USA: Association for Computational Linguistics,
June 2014, pp. 103–111. doi: 10.3115/v1/W14-4012.

[35] W. Chu and Z. Ghahramani. “Probabilistic models for incomplete multi-
dimensional arrays”. In: Journal of Machine Learning Research 5.2006 (2009),
pp. 89–96.

[36] A. Cichocki, N. Lee, I. V. Oseledets, A. H. Phan, Q. Zhao, and D. Mandic.
“Tensor networks for dimensionality reduction and large-scale optimization:
Part 1 low-rank tensor decompositions”. In: Foundations and Trends in Machine
Learning 9.4-5 (Dec. 2016), pp. 249–429. doi: 10.1561/2200000059.

[37] A. Cichocki, D. Mandic, L. De Lathauwer, G. Zhou, Q. Zhao, C. Caiafa,
and A. H. Phan. “Tensor decompositions for signal processing applications:
From two-way to multiway component analysis”. In: IEEE Signal Processing
Magazine 32.2 (2015), pp. 145–163. doi: 10.1109/MSP.2013.2297439.

[38] N. Cohen, O. Sharir, and A. Shashua. “On the expressive power of deep learning:
A tensor analysis”. In: Journal of Machine Learning Research 49.June (2016),
pp. 698–728.

[39] N. Cohen and A. Shashua. “SimNets: A Generalization of Convolutional Net-
works”. In: Advances in Neural Information Processing Systems 28 (NeurIPS),
Deep Learning Workshop (2014).

[40] S. B. Cohen and M. Collins. “Tensor decomposition for fast parsing with latent-
variable PCFGs”. In: Advances in Neural Information Processing Systems.
2012.

[41] P. Comon, G. Golub, L.-H. Lim, and B. Mourrain. “Symmetric Tensors and
Symmetric Tensor Rank”. In: SIAM Journal on Matrix Analysis and Applica-
tions 30.3 (2008), pp. 1254–1279. doi: 10.1137/060661569.

[42] A. Critch and J. Morton. “Algebraic geometry of matrix product states”. In:
Symmetry, Integrability and Geometry: Methods and Applications (SIGMA) 10
(2014). doi: 10.3842/SIGMA.2014.095.

[43] G. Cybenko. “Approximation by superpositions of a sigmoidal function”. In:
Mathematics of Control, Signals, and Systems 2.4 (Dec. 1989), pp. 303–314.
doi: 10.1007/BF02551274.

[44] L. De Lathauwer, B. De Moor, and J. Vandewalle. “A Multilinear Singular
Value Decomposition”. In: SIAM Journal on Matrix Analysis and Applications
21.4 (Jan. 2000), pp. 1253–1278. doi: 10.1137/S0895479896305696.

https://doi.org/10.3115/v1/W14-4012
https://doi.org/10.1561/2200000059
https://doi.org/10.1109/MSP.2013.2297439
https://doi.org/10.1137/060661569
https://doi.org/10.3842/SIGMA.2014.095
https://doi.org/10.1007/BF02551274
https://doi.org/10.1137/S0895479896305696

Bibliography 159

[45] A. P. Dempster, N. M. Laird, and D. B. Rubin. “Maximum Likelihood from
Incomplete Data Via the EM Algorithm”. In: Journal of the Royal Statistical
Society: Series B (Methodological) 39.1 (Sept. 1977), pp. 1–22. doi: 10.1111/

j.2517-6161.1977.tb01600.x.

[46] L. Denoyer and P. Gallinari. “Report on the XML mining track at INEX 2005
and INEX 2006”. In: ACM SIGIR Forum 41.1 (June 2007), pp. 79–90. doi:
10.1145/1273221.1273230.

[47] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. “BERT: Pre-training of
deep bidirectional transformers for language understanding”. In: Proceedings
of the 2019 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, Volume 1 (Long
and Short Papers). Stroudsburg, PA, USA: Association for Computational
Linguistics, 2019, pp. 4171–4186. doi: 10.18653/v1/N19-1423.

[48] M. M. Deza and E. Deza. Encyclopedia of Distances. Springer Berlin Heidelberg,
2013. doi: 10.1007/978-3-642-30958-8.

[49] M. Droste, W. Kuich, and H. Vogler. Handbook of weighted automata. 2009.

[50] P. Dupont, F. Denis, and Y. Esposito. “Links between probabilistic automata
and hidden Markov models: Probability distributions, learning models and
induction algorithms”. In: Pattern Recognition 38.9 (Sept. 2005), pp. 1349–1371.
doi: 10.1016/j.patcog.2004.03.020.

[51] J. B. Durand, P. Gonçalvès, and Y. Guédon. “Computational methods for
hidden Markov tree models-An application to wavelet trees”. In: IEEE Trans-
actions on Signal Processing 52.9 (Sept. 2004), pp. 2551–2560. doi: 10.1109/

TSP.2004.832006.

[52] C. A. Ellis. “Probabilistic tree automata”. In: Information and Control 19.5
(Dec. 1971), pp. 401–416. doi: 10.1016/S0019-9958(71)90673-5.

[53] J. L. Elman. “Finding structure in time”. In: Cognitive Science 14.2 (1990),
pp. 179–211. doi: 10.1016/0364-0213(90)90002-E.

[54] A. Eriguchi, K. Hashimoto, and Y. Tsuruoka. “Tree-to-Sequence Attentional
Neural Machine Translation”. In: Proceedings of the 54th Annual Meeting
of the Association for Computational Linguistics 1 (2016), pp. 823–833. doi:
10.18653/v1/P16-1078.

[55] M. Fannes, B. Nachtergaele, and R. F. Werner. “Finitely correlated states on
quantum spin chains”. In: Communications in Mathematical Physics 144.3
(Mar. 1992), pp. 443–490. doi: 10.1007/BF02099178.

[56] T. S. Ferguson. “A Bayesian Analysis of Some Nonparametric Problems”. In:
The Annals of Statistics 1.2 (1973), pp. 209–230.

[57] J. R. Finkel, T. Grenager, and C. D. Manning. “The Infinite Tree”. In: Annual
Meeting-Association for Computational Linguistics. 2006, pp. 272–279.

https://doi.org/10.1111/j.2517-6161.1977.tb01600.x
https://doi.org/10.1111/j.2517-6161.1977.tb01600.x
https://doi.org/10.1145/1273221.1273230
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.1007/978-3-642-30958-8
https://doi.org/10.1016/j.patcog.2004.03.020
https://doi.org/10.1109/TSP.2004.832006
https://doi.org/10.1109/TSP.2004.832006
https://doi.org/10.1016/S0019-9958(71)90673-5
https://doi.org/10.1016/0364-0213(90)90002-E
https://doi.org/10.18653/v1/P16-1078
https://doi.org/10.1007/BF02099178

160 Bibliography

[58] P. Frasconi, M. Gori, and A. Sperduti. “A general framework for adaptive
processing of data structures”. In: IEEE Transactions on Neural Networks 9.5
(1998), pp. 768–786. doi: 10.1109/72.712151.

[59] C. Gallicchio and A. Micheli. “Tree Echo State Networks”. In: Neurocomputing
101 (2013), pp. 319–337. doi: 10.1016/j.neucom.2012.08.017.

[60] C. Gallicchio, A. Micheli, and L. Pedrelli. “Deep reservoir computing: A critical
experimental analysis”. In: Neurocomputing 268 (Dec. 2017), pp. 87–99. doi:
10.1016/j.neucom.2016.12.089.

[61] J. Gallier. Curves and surfaces in geometric modeling: theory and algorithms.
Morgan Kaufmann Publishers, 2018.

[62] T. Gärtner. “A survey of kernels for structured data”. In: ACM SIGKDD
Explorations Newsletter 5.1 (July 2003), pp. 49–58. doi: 10.1145/959242.

959248.

[63] E. I. George and R. E. McCulloch. “Approaches for Bayesian variable selection.”
In: Statistica Sinica (1997). doi: 10.1.1.211.4871.

[64] N. Gianniotis and P. Tiňo. “Visualization of tree-structured data through
generative topographic mapping”. In: IEEE Transactions on Neural Networks
(2008). doi: 10.1109/TNN.2008.2001000.

[65] C. L. Giles and T. Maxwell. Learning, invariance, and generalization in high-
order neural networks. Dec. 1987. doi: 10.1364/ao.26.004972.

[66] I. Glasser, R. Sweke, N. Pancotti, J. Eisert, J. Ignacio Cirac, and I. Cirac.
“Expressive power of tensor-network factorizations for probabilistic modeling”.
In: Advances in Neural Information Processing Systems. Ed. by H. Wallach,
H. Larochelle, A. Beygelzimer, d\textquotesingle Alché-Buc, E. Fox, and R.
Garnett. Vol. 32. NeurIPS. Curran Associates, Inc., 2019, pp. 1–13.

[67] C. Goller and A. Kuchler. “Learning task-dependent distributed represen-
tations by backpropagation through structure”. In: Proceedings of Interna-
tional Conference on Neural Networks (ICNN’96) 1 (1996), pp. 347–352. doi:
10.1109/ICNN.1996.548916.

[68] I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. MIT Press, 2016.

[69] P. Gopalan, F. J. Ruiz, R. Ranganath, and D. M. Blei. “Bayesian nonparametric
poisson factorization for recommendation systems”. In: Journal of Machine
Learning Research 33 (2014), pp. 275–283.

[70] A. L. Gorodentsev. Algebra II. Cham: Springer International Publishing, 2017.
doi: 10.1007/978-3-319-50853-5.

[71] L. Grasedyck. “Hierarchical Singular Value Decomposition of Tensors”. In:
SIAM Journal on Matrix Analysis and Applications 31.4 (Jan. 2010), pp. 2029–
2054. doi: 10.1137/090764189.

https://doi.org/10.1109/72.712151
https://doi.org/10.1016/j.neucom.2012.08.017
https://doi.org/10.1016/j.neucom.2016.12.089
https://doi.org/10.1145/959242.959248
https://doi.org/10.1145/959242.959248
https://doi.org/10.1.1.211.4871
https://doi.org/10.1109/TNN.2008.2001000
https://doi.org/10.1364/ao.26.004972
https://doi.org/10.1109/ICNN.1996.548916
https://doi.org/10.1007/978-3-319-50853-5
https://doi.org/10.1137/090764189

Bibliography 161

[72] A. Graves. “Generating Sequences With Recurrent Neural Networks”. In:
(2013).

[73] W. Hackbusch and ·. S. Kühn. “A New Scheme for the Tensor Representation”.
In: J Fourier Anal Appl 15 (2009), pp. 706–722. doi: 10.1007/s00041-009-

9094-9.

[74] W. Hackbusch. Tensor Spaces and Numerical Tensor Calculus. Vol. 42. Springer
Series in Computational Mathematics 8. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2012, pp. 1–5. doi: 10.1007/978-3-642-28027-6.

[75] M. Hagenbuchner, A. Sperduti, A. C. Tsoi, F. Trentini, F. Scarselli, and M.
Gori. “Clustering XML documents using Self-Organizing Maps for structures”.
In: Lecture Notes in Computer Science (including subseries Lecture Notes
in Artificial Intelligence and Lecture Notes in Bioinformatics). 2006. doi:
10.1007/978-3-540-34963-1_37.

[76] M. Hagenbuchner, A. Sperduti, and A. C. Tsoi. “A self-organizing map for
adaptive processing of structured data”. In: IEEE Transactions on Neural
Networks (2003). doi: 10.1109/TNN.2003.810735.

[77] B. Hammer. “Neural methods for non-standard data”. In: Proceedings of
ESANN 2004 (2004).

[78] B. Hammer. Learning with recurrent neural networks. Vol. 254. Lecture Notes
in Control and Information Sciences. London: Springer London, 2000. doi:
10.1007/BFb0110016.

[79] B. Hammer. Universal Approximation of Mappings on Structured Objects using
the Folding Architecture. Tech. rep. 1996.

[80] B. Hammer, A. Micheli, A. Sperduti, and M. Strickert. “A general framework
for unsupervised processing of structured data”. In: Neurocomputing 57.1-4
(Mar. 2004), pp. 3–35. doi: 10.1016/j.neucom.2004.01.008.

[81] R. Harshman. “Foundations of the PARAFAC procedure: Models and conditions
for an "explanatory" multi-modal factor analysis”.

[82] S. E. Hihi and Y. Bengio. “Hierarchical Recurrent Neural Networks for Long-
Term Dependencies”. In: Advances in Neural Information Processing Systems
(1995).

[83] F. L. Hitchcock. “Multiple Invariants and Generalized Rank of a P-Way Matrix
or Tensor”. In: Journal of Mathematics and Physics 7.1-4 (Apr. 1928), pp. 39–
79. doi: 10.1002/sapm19287139.

[84] F. L. Hitchcock. “The Expression of a Tensor or a Polyadic as a Sum of
Products”. In: Journal of Mathematics and Physics 6.1-4 (Apr. 1927), pp. 164–
189. doi: 10.1002/sapm192761164.

[85] S. Hochreiter and J. Schmidhuber. “Long short term memory”. In: Neural
Computation 9.8 (1997), pp. 1735–1780.

https://doi.org/10.1007/s00041-009-9094-9
https://doi.org/10.1007/s00041-009-9094-9
https://doi.org/10.1007/978-3-642-28027-6
https://doi.org/10.1007/978-3-540-34963-1_37
https://doi.org/10.1109/TNN.2003.810735
https://doi.org/10.1007/BFb0110016
https://doi.org/10.1016/j.neucom.2004.01.008
https://doi.org/10.1002/sapm19287139
https://doi.org/10.1002/sapm192761164

162 Bibliography

[86] P. D. Hoff. “Hierarchical multilinear models for multiway data”. In: Computa-
tional Statistics and Data Analysis 55.1 (2011), pp. 530–543. doi: 10.1016/j.

csda.2010.05.020.

[87] K. Hornik, M. Stinchcombe, and H. White. “Multilayer feedforward networks
are universal approximators”. In: Neural Networks (1989). doi: 10.1016/0893-

6080(89)90020-8.

[88] M. Huang, Q. Qian, and X. Zhu. “Encoding syntactic knowledge in neural
networks for sentiment classification”. In: ACM Transactions on Information
Systems 35.3 (2017). doi: 10.1145/3052770.

[89] M. Iyyer, V. Manjunatha, J. Boyd-Graber, and H. Daumé III. “Deep Un-
ordered Composition Rivals Syntactic Methods for Text Classification”. In:
Proceedings of the 53rd Annual Meeting of the Association for Computational
Linguistics and the 7th International Joint Conference on Natural Language
Processing (Volume 1: Long Papers). Stroudsburg, PA, USA: Association for
Computational Linguistics, 2015, pp. 1681–1691. doi: 10.3115/v1/P15-1162.

[90] Y. Ji, Q. Wang, X. Li, and J. Liu. “A Survey on Tensor Techniques and
Applications in Machine Learning”. In: IEEE Access 7 (2019), pp. 162950–
162990. doi: 10.1109/ACCESS.2019.2949814.

[91] V. Khrulkov, O. Hrinchuk, and I. V. Oseledets. “Generalized Tensor Models
for Recurrent Neural Networks”. In: International Conference on Learning
Representations. 2019.

[92] V. Khrulkov, A. Novikov, and I. V. Oseledets. “Expressive power of recurrent
neural networks”. In: International Conference on Learning Representations.
Nov. 2018, pp. 1–12.

[93] H. A. Kiers. “Towards a standardized notation and terminology in multiway
analysis”. In: Journal of Chemometrics 14.3 (May 2000), pp. 105–122. doi:
10.1002/1099-128X(200005/06)14:3<105::AID-CEM582>3.0.CO;2-I.

[94] T. Kim, J. Choi, D. Edmiston, S. Bae, and S.-g. Lee. “Dynamic Compositionality
in Recursive Neural Networks with Structure-Aware Tag Representations”.
In: Proceedings of the AAAI Conference on Artificial Intelligence 33 (2019),
pp. 6594–6601. doi: 10.1609/aaai.v33i01.33016594.

[95] D. P. Kingma and J. L. Ba. “Adam: A method for stochastic optimization”. In:
3rd International Conference on Learning Representations, ICLR 2015 - Confer-
ence Track Proceedings. International Conference on Learning Representations,
ICLR, Dec. 2015.

[96] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. “Optimization by simulated
annealing”. In: Science (1983). doi: 10.1126/science.220.4598.671.

[97] M. Kliesch, D. Gross, and J. Eisert. “Matrix-product operators and states:
NP-hardness and undecidability”. In: Physical Review Letters 113.16 (2014),
pp. 1–7. doi: 10.1103/PhysRevLett.113.160503.

https://doi.org/10.1016/j.csda.2010.05.020
https://doi.org/10.1016/j.csda.2010.05.020
https://doi.org/10.1016/0893-6080(89)90020-8
https://doi.org/10.1016/0893-6080(89)90020-8
https://doi.org/10.1145/3052770
https://doi.org/10.3115/v1/P15-1162
https://doi.org/10.1109/ACCESS.2019.2949814
https://doi.org/10.1002/1099-128X(200005/06)14:3<105::AID-CEM582>3.0.CO;2-I
https://doi.org/10.1609/aaai.v33i01.33016594
https://doi.org/10.1126/science.220.4598.671
https://doi.org/10.1103/PhysRevLett.113.160503

Bibliography 163

[98] A. Klümper, A. Schadschneider, and J. Zittartz. “Matrix Product Ground States
for One-Dimensional Spin-1 Quantum Antiferromagnets”. In: Europhysics
Letters (EPL) 24.4 (Nov. 1993), pp. 293–297. doi: 10.1209/0295-5075/24/4/

010.

[99] T. G. Kolda and B. W. Bader. “Tensor Decompositions and Applications”. In:
SIAM Review 51.3 (2009), pp. 455–500. doi: 10.1137/07070111X.

[100] J. Kossaifi, Z. C. Lipton, A. Kolbeinsson, A. Khanna, T. Furlanello, and A.
Anandkumar. “Tensor regression networks”. In: Journal of Machine Learning
Research 21.123 (2020), pp. 1–21.

[101] J. Kossaifi, Y. Panagakis, A. Anandkumar, and M. Pantic. “TensorLy: Tensor
learning in python”. In: Journal of Machine Learning Research (2019).

[102] J. R. Koza, F. H. Bennett, D. Andre, and M. A. Keane. “Automated Design
of Both the Topology and Sizing of Analog Electrical Circuits Using Genetic
Programming”. In: Artificial Intelligence in Design ’96. Springer Netherlands,
1996, pp. 151–170. doi: 10.1007/978-94-009-0279-4_9.

[103] S. C. Kremer. “On the Computational Power of Elman-Style Recurrent Net-
works”. In: IEEE Transactions on Neural Networks 6.4 (1995), pp. 1000–1004.
doi: 10.1109/72.392262.

[104] A. Kuchler. On the Correspondence between Neural Folding Architectures and
Tree Automata. Tech. rep. Ulmer Informatik-Berichte Nr. 98-06, 1998.

[105] V. Lebedev, Y. Ganin, M. Rakhuba, I. V. Oseledets, and V. Lempit-
sky. “Speeding-up convolutional neural networks using fine-tuned CP-
decomposition”. In: 3rd International Conference on Learning Representations,
ICLR 2015 - Conference Track Proceedings (2015), pp. 1–11.

[106] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard,
and L. D. Jackel. “Backpropagation Applied to Handwritten Zip Code Recog-
nition”. In: Neural Computation (1989). doi: 10.1162/neco.1989.1.4.541.

[107] X. Li and D. Roth. “Learning question classifiers”. In: Proceedings of the 19th
international conference on Computational linguistics -. Vol. 1. Morristown,
NJ, USA: Association for Computational Linguistics, 2002, pp. 1–7. doi: 10.

3115/1072228.1072378.

[108] P. Liu, X. Qiu, and X. Huang. “Dynamic Compositional Neural Networks
over Tree Structure”. In: Proceedings of the Twenty-Sixth International Joint
Conference on Artificial Intelligence. California: International Joint Conferences
on Artificial Intelligence Organization, Aug. 2017, pp. 4054–4060. doi: 10.

24963/ijcai.2017/566.

[109] R. Livni, S. Shalev-Shwartz, and O. Shamir. “On the Computational Efficiency
of Training Neural Networks”. In: Advances in Neural Information Processing
Systems 1.January (Oct. 2014), pp. 855–863.

https://doi.org/10.1209/0295-5075/24/4/010
https://doi.org/10.1209/0295-5075/24/4/010
https://doi.org/10.1137/07070111X
https://doi.org/10.1007/978-94-009-0279-4_9
https://doi.org/10.1109/72.392262
https://doi.org/10.1162/neco.1989.1.4.541
https://doi.org/10.3115/1072228.1072378
https://doi.org/10.3115/1072228.1072378
https://doi.org/10.24963/ijcai.2017/566
https://doi.org/10.24963/ijcai.2017/566

164 Bibliography

[110] M. Lukoševičius and H. Jaeger. “Reservoir computing approaches to recurrent
neural network training”. In: Computer Science Review 3.3 (Aug. 2009), pp. 127–
149. doi: 10.1016/j.cosrev.2009.03.005.

[111] X. Ma, P. Zhang, S. Zhang, N. Duan, Y. Hou, D. Song, and M. Zhou. “A ten-
sorized transformer for language modeling”. In: Advances in Neural Information
Processing Systems. 2019.

[112] C. D. Manning, M. Surdeanu, J. Bauer, J. Finkel, S. Bethard, and D. McClosky.
“The Stanford CoreNLP Natural Language Processing Toolkit”. In: Proceedings
of 52nd Annual Meeting of the Association for Computational Linguistics:
System Demonstrations. Stroudsburg, PA, USA: Association for Computational
Linguistics, 2014, pp. 55–60. doi: 10.3115/v1/P14-5010.

[113] M. Marelli, L. Bentivogli, M. Baroni, R. Bernardi, S. Menini, and R. Zam-
parelli. “SemEval-2014 Task 1: Evaluation of Compositional Distributional
Semantic Models on Full Sentences through Semantic Relatedness and Textual
Entailment”. In: Proceedings of the 8th International Workshop on Seman-
tic Evaluation (SemEval 2014). 1. Stroudsburg, PA, USA: Association for
Computational Linguistics, 2014, pp. 1–8. doi: 10.3115/v1/S14-2001.

[114] G. McLachlan and D. Peel. Finite Mixture Models. Wiley Series in Probability
and Statistics. Hoboken, NJ, USA: John Wiley & Sons, Inc., Sept. 2000. doi:
10.1002/0471721182.

[115] T. Mikolov. “STATISTICAL LANGUAGE MODELS BASED ON NEURAL
NETWORKS”. Ph.D. thesis. Brno University of Technology, Faculty of Infor-
mation Technology, 2012.

[116] C. B. Miller and C. L. Giles. “Experimental Comparison of the Effect of Order in
Recurrent Neural Networks”. In: International Journal of Pattern Recognition
and Artificial Intelligence 7.4 (1993), p. 849.

[117] T. M. Mitchell. Machine Learning. New York: McGraw-Hill, 1997.

[118] T. M. Mitchell. The Need for Biases in Learning Generalizations. Tech. rep.

[119] L. Mou and Z. Jin. Tree-Based Convolutional Neural Networks. SpringerBriefs
in Computer Science. Singapore: Springer Singapore, 2018. doi: 10.1007/978-

981-13-1870-2.

[120] L. Mou, G. Li, L. Zhang, T. Wang, and Z. Jin. “Convolutional Neural Networks
over Tree Structures for Programming Language Processing”. 2014.

[121] M. Mozer, R. Lippmann, J. Moody, and D. Touretsky. “Induction of multiscale
temporal structure”. In: Advances in Neural Information Processing Systems 4
(1992).

https://doi.org/10.1016/j.cosrev.2009.03.005
https://doi.org/10.3115/v1/P14-5010
https://doi.org/10.3115/v1/S14-2001
https://doi.org/10.1002/0471721182
https://doi.org/10.1007/978-981-13-1870-2
https://doi.org/10.1007/978-981-13-1870-2

Bibliography 165

[122] V. Murg, F. Verstraete, and J. I. Cirac. “Variational study of hard-core bosons
in a two-dimensional optical lattice using projected entangled pair states”. In:
Physical Review A - Atomic, Molecular, and Optical Physics 75.3 (Mar. 2007),
p. 033605. doi: 10.1103/PhysRevA.75.033605.

[123] N. Nangia and S. R. Bowman. “ListOps: A Diagnostic Dataset for Latent
Tree Learning”. In: Proceedings of the 2018 Conference of the North American
Chapter of the Association for Computational Linguistics: Student Research
Workshop. Stroudsburg, PA, USA: Association for Computational Linguistics,
2018, pp. 92–99. doi: 10.18653/v1/N18-4013.

[124] R. M. Neal. “Markov Chain Sampling Methods for Dirichlet Process Mixture
Models”. In: Journal of Computational and Graphical Statistics (2000). doi:
10.1080/10618600.2000.10474879.

[125] A. Novikov, D. D. Podoprikhin, A. Osokin, and D. P. Vetrov. “Tensorizing
Neural Networks”. In: Advances in Neural Information Processing Systems
28. Ed. by C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama, and R.
Garnett. Curran Associates, Inc., Sept. 2015, pp. 442–450. doi: 10.1002/eji.

200324821.

[126] A. Novikov, A. Rodomanov, A. Osokin, and D. P. Vetrov. “Putting {MRFs}
on a Tensor Train”. In: Proceedings of the 31st International Conference on
Machine Learning 32 (2014), pp. 811–819.

[127] A. Novikov, M. Trofimov, and I. V. Oseledets. “Exponential Machines”. In:
Bulletin of the Polish Academy of Sciences: Technical Sciences 66.6 (May 2016),
pp. 789–797. doi: 10.24425/bpas.2018.125926.

[128] P. Orbanz and Y. W. Teh. Encyclopedia of Machine Learning. Ed. by C.
Sammut and G. I. Webb. 1. Boston, MA: Springer US, 2010, pp. 1–14. doi:
10.1007/978-0-387-30164-8.

[129] I. V. Oseledets. “Tensor-Train Decomposition”. In: SIAM Journal on Scientific
Computing 33.5 (Jan. 2011), pp. 2295–2317. doi: 10.1137/090752286.

[130] R. Pascanu, T. Mikolov, and Y. Bengio. “On the difficulty of training recurrent
neural networks”. In: 30th International Conference on Machine Learning,
ICML 2013. 2013.

[131] A. Paszke and et al. “Automatic Differentiation in PyTorch”. In: NIPS Autodiff
Workshop. 2017.

[132] J. Pennington, R. Socher, and C. D. Manning. “GloVe: Global vectors for word
representation”. In: EMNLP 2014 - 2014 Conference on Empirical Methods in
Natural Language Processing, Proceedings of the Conference. 2014, pp. 1532–
1543. doi: 10.3115/v1/d14-1162.

[133] D. Perez-Garcia, F. Verstraete, M. Wolf, and J. Cirac. “Matrix product state
representations”. In: Quantum Information and Computation 7.5&6 (July 2007),
pp. 401–430. doi: 10.26421/QIC7.5-6-1.

https://doi.org/10.1103/PhysRevA.75.033605
https://doi.org/10.18653/v1/N18-4013
https://doi.org/10.1080/10618600.2000.10474879
https://doi.org/10.1002/eji.200324821
https://doi.org/10.1002/eji.200324821
https://doi.org/10.24425/bpas.2018.125926
https://doi.org/10.1007/978-0-387-30164-8
https://doi.org/10.1137/090752286
https://doi.org/10.3115/v1/d14-1162
https://doi.org/10.26421/QIC7.5-6-1

166 Bibliography

[134] M. Peters, M. Neumann, M. Iyyer, M. Gardner, C. Clark, K. Lee, and L.
Zettlemoyer. “Deep Contextualized Word Representations”. In: Proceedings
of the 2018 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, Volume 1 (Long
Papers). Stroudsburg, PA, USA: Association for Computational Linguistics,
2018, pp. 2227–2237. doi: 10.18653/v1/N18-1202.

[135] I. Porteous, E. Bart, and M. Welling. “Multi-HDP: A non parametric bayesian
model for tensor factorization”. In: Proceedings of the National Conference on
Artificial Intelligence 3 (2008), pp. 1487–1490.

[136] G. Rabusseau, B. Balle, and S. B. Cohen. “Low-rank approximation of weighted
tree automata”. In: Proceedings of the 19th International Conference on Artifi-
cial Intelligence and Statistics, AISTATS 2016. 2016.

[137] G. Rabusseau and H. Kadri. “Low-rank regression with tensor responses”. In:
Advances in Neural Information Processing Systems. 2016.

[138] G. Rabusseau, T. Li, and D. Precup. “Connecting Weighted Automata and
Recurrent Neural Networks through Spectral Learning”. In: Proceedings of
Machine Learning Research. Ed. by K. Chaudhuri and M. Sugiyama. Vol. 89.
Proceedings of Machine Learning Research. PMLR, 2019, pp. 1630–1639.

[139] N. Razin and N. Cohen. “Implicit Regularization in Deep Learning May Not
Be Explainable by Norms”. In: Advances in Neural Information Processing
Systems. Ed. by H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, and
H. Lin. Curran Associates, Inc., May 2020, pp. 21174–21187.

[140] S. Rendle. “Factorization Machines”. In: 2010 IEEE International Conference
on Data Mining. IEEE, Dec. 2010, pp. 995–1000. doi: 10.1109/ICDM.2010.127.

[141] E. Rendón, I. Abundez, A. Arizmendi, and E. M. Quiroz. “Internal versus
External cluster validation indexes”. In: International Journal of Computers
and Communications (2011).

[142] E. Robeva and A. Seigal. “Duality of graphical models and tensor networks”.
In: Information and Inference 8.2 (2019), pp. 273–288. doi: 10.1093/imaiai/

iay009.

[143] P. J. Rousseeuw. “Silhouettes: A graphical aid to the interpretation and valida-
tion of cluster analysis”. In: Journal of Computational and Applied Mathematics
20 (Nov. 1987), pp. 53–65. doi: 10.1016/0377-0427(87)90125-7.

[144] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. “Learning representations
by back-propagating errors”. In: Nature (1986). doi: 10.1038/323533a0.

[145] A. Sarkar and D. B. Dunson. “Bayesian higher order hidden markov models”.
In: CoRR abs/1805.1 (2018).

https://doi.org/10.18653/v1/N18-1202
https://doi.org/10.1109/ICDM.2010.127
https://doi.org/10.1093/imaiai/iay009
https://doi.org/10.1093/imaiai/iay009
https://doi.org/10.1016/0377-0427(87)90125-7
https://doi.org/10.1038/323533a0

Bibliography 167

[146] A. Sarkar and D. B. Dunson. “Bayesian Nonparametric Modeling of Higher
Order Markov Chains”. In: Journal of the American Statistical Association
111.516 (2016), pp. 1791–1803. doi: 10.1080/01621459.2015.1115763.

[147] L. K. Saul and M. I. Jordan. “Mixed memory Markov models: Decomposing
complex stochastic processes as mixtures of simpler ones”. In: Machine Learning
37.1 (1999), pp. 75–87. doi: 10.1023/A:1007649326333.

[148] G. Shen, Z.-H. Deng, T. Huang, and X. Chen. “Learning to compose over tree
structures via POS tags for sentence representation”. In: Expert Systems with
Applications 141 (Mar. 2020), p. 112917. doi: 10.1016/j.eswa.2019.112917.

[149] Y. Shido, Y. Kobayashi, A. Yamamoto, A. Miyamoto, and T. Matsumura.
“Automatic Source Code Summarization with Extended Tree-LSTM”. In: Pro-
ceedings of the International Joint Conference on Neural Networks 2019-July
(2019), pp. 1–14. doi: 10.1109/IJCNN.2019.8851751.

[150] Y. Shitov. “A Counterexample to Comon’s Conjecture”. In: SIAM Journal on
Applied Algebra and Geometry 2.3 (Sept. 2018), pp. 428–443. doi: 10.1137/

17M1131970.

[151] H. T. Siegelmann and E. D. Sontag. “On the computational power of neural
nets”. In: Journal of Computer and System Sciences 50.1 (Feb. 1995), pp. 132–
150. doi: 10.1006/jcss.1995.1013.

[152] R. Socher, B. Huval, C. D. Manning, and A. Y. Ng. “Semantic compositionality
through recursive matrix-vector spaces”. In: EMNLP-CoNLL 2012 - 2012
Joint Conference on Empirical Methods in Natural Language Processing and
Computational Natural Language Learning, Proceedings of the Conference. 2012.

[153] R. Socher, A. Perelygin, J. Y. Wu, J. Chuang, C. D. Manning, A. Y. Ng,
and C. Potts. “Recursive deep models for semantic compositionality over a
sentiment treebank”. In: EMNLP 2013 - 2013 Conference on Empirical Methods
in Natural Language Processing, Proceedings of the Conference 8.9 (Dec. 2013).
Ed. by T. Preis, pp. 1631–1642.

[154] E. D. Sontag. “Neural nets as system models and controllers”. In: Proc. 7th
Yale workshop on Adaptive and Learning Systems (1992).

[155] N. Srivastava, G. E. Hinton, A. Krizhevsky, and R. Salakhutdinov. “Dropout:
A Simple Way to Prevent Neural Networks from Overfitting”. In: Journal of
Machine Learning Research 15.56 (2014), pp. 1929–1958.

[156] E. M. Stoudenmire and D. J. Schwab. “Supervised learning with tensor net-
works”. In: Advances in Neural Information Processing Systems Nips (2016),
pp. 4806–4814.

[157] I. Sutskever, R. Salakhutdinov, and J. B. Tenenbaum. “Modelling relational
data using Bayesian clustered tensor factorization”. In: Advances in Neural
Information Processing Systems 22 - Proceedings of the 2009 Conference (2009),
pp. 1821–1828.

https://doi.org/10.1080/01621459.2015.1115763
https://doi.org/10.1023/A:1007649326333
https://doi.org/10.1016/j.eswa.2019.112917
https://doi.org/10.1109/IJCNN.2019.8851751
https://doi.org/10.1137/17M1131970
https://doi.org/10.1137/17M1131970
https://doi.org/10.1006/jcss.1995.1013

168 Bibliography

[158] I. Sutskever, O. Vinyals, Q. V. Le, I. Sutskever Google, O. Vinyals Google,
and Q. V. Le Google. “Sequence to sequence learning with neural networks”.
In: Advances in Neural Information Processing Systems (NIPS) 27 (2014),
pp. 3104–3112. doi: 10.1007/s10107-014-0839-0.

[159] K. S. Tai, R. Socher, and C. D. Manning. “Improved Semantic Representations
From Tree-Structured Long Short-Term Memory Networks”. In: Proceedings
of the 53rd Annual Meeting of the Association for Computational Linguistics
and the 7th International Joint Conference on Natural Language Processing
(Volume 1: Long Papers) (2015), pp. 1556–1566. doi: 10.3115/v1/P15-1150.

[160] D. Tao, X. Li, X. Wu, W. Hu, and S. J. Maybank. “Supervised tensor learning”.
In: Knowledge and Information Systems 13.1 (Sept. 2007), pp. 1–42. doi:
10.1007/s10115-006-0050-6.

[161] Y. W. Teh, M. I. Jordan, M. J. Beal, and D. M. Blei. “Sharing clusters
among related groups: Hierarchical dirichlet processes”. In: Advances in Neural
Information Processing Systems. 2005.

[162] Z. Teng and Y. Zhang. “Head-Lexicalized Bidirectional Tree LSTMs”. In:
Transactions of the Association for Computational Linguistics 5 (2017), pp. 163–
177. doi: 10.1162/tacl_a_00053.

[163] A. Tjandra, S. Sakti, and S. Nakamura. “Tensor Decomposition for Compress-
ing Recurrent Neural Network”. In: Proceedings of the International Joint
Conference on Neural Networks. Vol. 2018-July. Institute of Electrical and
Electronics Engineers Inc., Oct. 2018. doi: 10.1109/IJCNN.2018.8489213.

[164] L. R. Tucker. “Some mathematical notes on three-mode factor analysis”. In:
Psychometrika 31.3 (1966), pp. 279–311. doi: 10.1007/BF02289464.

[165] V. Vapnik. “An overview of statistical learning theory”. In: IEEE Transactions
on Neural Networks 10.5 (1999), pp. 988–999. doi: 10.1109/72.788640.

[166] V. N. Vapnik. Statistical Learning Theory. A Wiley-Interscience publication.
Wiley, 1998.

[167] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser, and I. Polosukhin. “Attention is all you need”. In: Proceedings of
the 31st International Conference on Neural Information Processing Systems.
Curran Associates, Inc., 2017, pp. 6000–6010.

[168] F. Verstraete and J. I. Cirac. “Renormalization algorithms for Quantum-Many
Body Systems in two and higher dimensions”. In: CoRR cond-mat/0 (July
2004).

[169] D. Verstraeten, B. Schrauwen, M. D’Haene, and D. Stroobandt. “An experi-
mental unification of reservoir computing methods”. In: Neural Networks 20.3
(Apr. 2007), pp. 391–403. doi: 10.1016/j.neunet.2007.04.003.

https://doi.org/10.1007/s10107-014-0839-0
https://doi.org/10.3115/v1/P15-1150
https://doi.org/10.1007/s10115-006-0050-6
https://doi.org/10.1162/tacl_a_00053
https://doi.org/10.1109/IJCNN.2018.8489213
https://doi.org/10.1007/BF02289464
https://doi.org/10.1109/72.788640
https://doi.org/10.1016/j.neunet.2007.04.003

Bibliography 169

[170] M. Wang and et al. “Deep Graph Library: Towards Efficient and Scalable
Deep Learning on Graphs”. In: ICLR Workshop on Representation Learning
on Graphs and Manifolds. 2019.

[171] N. Weber, N. Balasubramanian, and N. Chambers. “Event representations
with tensor-based compositions”. In: 32nd AAAI Conference on Artificial
Intelligence, AAAI 2018. 2018.

[172] P. J. Werbos. “Generalization of backpropagation with application to a recurrent
gas market model”. In: Neural Networks (1988). doi: 10.1016/0893-6080(88)

90007-X.

[173] J. Wieting, M. Bansal, K. Gimpel, and K. Livescu. “Towards universal para-
phrastic sentence embeddings”. In: 4th International Conference on Learning
Representations, ICLR 2016. 2016.

[174] H. Wu, C. Ma, N. Cohen, and A. Shashua. “Convolutional Rectifier Networks As
Generalized Tensor Decompositions”. In: Proceedings of the 33rd International
Conference on International Conference on Machine Learning. Vol. 48. ICML’16.
JMLR.org, 2016, pp. 955–963. doi: 10.1109/WISM.2010.164.

[175] Z. Xu, F. Yan, and Y. Qi. “Infinite tucker decomposition: nonparametric
Bayesian models for multiway data analysis”. In: Proceedings of the 29th
International Conference on Machine Learning, ICML 2012 2.2009 (2012),
pp. 1023–1030.

[176] Y. Yang and D. B. Dunson. “Bayesian Conditional Tensor Factorizations
for High-Dimensional Classification”. In: Journal of the American Statistical
Association 111.514 (2016), pp. 656–669. doi: 10 . 1080 / 01621459 . 2015 .

1029129.

[177] Z. Yang, W. Chen, F. Wang, and B. Xu. “Improving Neural Machine Translation
with Conditional Sequence Generative Adversarial Nets”. In: 16th Annual
Conference of the North American Chapter of the Association for Computational
Linguistics (NAACL 2018). 2018.

[178] R. Yu, S. Zheng, A. Anandkumar, and Y. Yue. “Long-term forecasting using
higher-order tensor RNNs”. In: CoRR abs/1711.0 (2017), pp. 1–24.

[179] M. D. Zeiler. “ADADELTA: An Adaptive Learning Rate Method”. Dec. 2012.

[180] Q. Zhao, L. Zhang, and A. Cichocki. “Bayesian CP factorization of incomplete
tensors with automatic rank determination”. In: IEEE Transactions on Pattern
Analysis and Machine Intelligence 37.9 (2015), pp. 1751–1763. doi: 10.1109/

TPAMI.2015.2392756.

[181] Q. Zhao, G. Zhou, S. Xie, L. Zhang, and A. Cichocki. “Tensor Ring Decompo-
sition”. In: CoRR abs/1606.0 (2016), pp. 1–14.

https://doi.org/10.1016/0893-6080(88)90007-X
https://doi.org/10.1016/0893-6080(88)90007-X
https://doi.org/10.1109/WISM.2010.164
https://doi.org/10.1080/01621459.2015.1029129
https://doi.org/10.1080/01621459.2015.1029129
https://doi.org/10.1109/TPAMI.2015.2392756
https://doi.org/10.1109/TPAMI.2015.2392756

	Abstract
	Contents
	List of Figures
	List of Tables
	List of Symbols
	Introduction
	Motivations
	Objectives and Contributions
	Outline of the Thesis
	Origin of the Chapters

	Background and Related Works
	Chapter Overview
	Introduction on Machine Learning
	Bayesian Networks
	Feed-Forward Neural Networks

	Learning with Structured Data
	General Framework for Processing Structured Data
	Recursive Models for Sequences
	Recursive Models for Highly-Structured Domains

	Tensors
	Definitions and Notations
	Operations on Tensors
	Tensor Decompositions
	Tensors and Machine Learning

	Model Taxonomy

	A Tensor Framework for Recursive Models
	Introduction
	General Tensor Framework
	Hidden Recursive Tensor Models
	Recursive Neural Tensor Networks

	Existing Approximation
	Switching-Parent
	First-Order Approximation

	Conclusion

	Tensor Decompositions for Recursive Tensor Models
	Introduction
	Approximated Recursive Tensor Models
	Tensor Decompositions and Model Approximations
	Canonical Approximation
	Higher-Order Singular Value Decomposition Approximation
	Tensor Train Approximation

	Approximated LSTM-based Recursive Models
	Experimental Analysis
	Implementation Details
	Experimental Settings
	Boolean Sentences Task
	List Operations Task
	The Importance of the Inductive Bias
	Computational Complexity Analysis

	Conclusion

	Tensor Models for Unbounded Structured Data
	Introduction
	Infinite Recursive Tensor Models
	Tensor Decompositions and Weight Sharing
	Infinite Canonical Approximation
	Infinite Tensor-Train Approximation

	Application to Natural Language Processing
	Sentences as Structures
	Related Works
	Experimental Analysis
	Qualitative Analysis of Sentences Semantic Entailment

	Conclusion

	Unbounded Models for Structured Data
	Introduction
	Bayesian Mixture Model for Structured Data Clustering
	SP-HRTM for Unsupervised Learning
	Mixture of SP-HRTMs
	Bayesian Non-parametric Mixture of SP-HRTM
	Experimental results

	Bayesian HOSVD for Structured Data Labelling
	Bayesian HOSVD Model
	Parameters Learning and Rank Estimation
	Experimental Analysis

	Conclusion

	Conclusion
	List of Publications
	Contributed Code
	Proofs
	Proof of Theorem 1

	EM Procedures
	SP-HRTM Derivations
	CP-HRTM Derivations
	HOSVD-HRTM Derivations
	TT-HRTM Derivations

	Bibliography

